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IITT 63: DESIGN AND ANALYSIS OF ALGORITHMS 
 

Unit - I  
Introduction – Performance Analysis. Divide and conquer 

Method: Binary Search, Finding Maximum and Minimum, Merge 
Sort and Quick Sort. 

 
 

Introduction 
 

What is an Algorithm? 
 
 An algorithm is a finite set of instructions that, if followed, 

accomplishes a particular task. In addition, all algorithms should 

satisfy the following criteria, 

 

1. Input: zero or more quantities are externally supplied. 
 

2. Output: At least one quantity is produced  
 

3. Definiteness (confidence): Each instruction is clear and 
unambiguous (clear cut). 

 
4. Finiteness: The algorithm must terminate after a finite 

number of steps. 
 

5. Effectiveness: Each instruction is very basic, so that can be 
carried out in a finite amount of time and it must be feasible 
(sufficient). 

 
Algorithms that are definite and effective are also called as 
computational procedures. 
 
For example: Operating system of a digital computer is one of the 
best examples of computational procedure. This procedure is 
designed to control the execution of jobs, in such a way that no 
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jobs are available it does not terminate but continues in a waiting 
state until a new job is entered. 
 
A program is the expression of an algorithm in a programming 
language. 
 
Algorithms are written in programming languages to achieve the 
criterion of definiteness. 
 
 

 
 
 

 

 

 

 
                              Notion(idea) of algorithm 

 
Performance of a program:  
 
The performance of a program is the amount of computer 
memory and time needed to run a program.  
 
There are two approaches available to determine the performance 
of a program, are 
 

 Analytical 
 Experimental.  

 
In performance analysis analytical methods are used, while 

in performance measurement experiments are conducted. 
 

 
 
 

Problem 

algorithm 

“computer” Input

  

output 
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Time Complexity: 
 

The time needed by an algorithm expressed as a function of 
the size of a problem is called the time complexity of the 
algorithm.  

 
The time complexity of a program is the amount of 

computer time needed to execute the program successfully. 
 
Actually the execution time of a program depends on a 

variety of backgrounds: like  
 

 complexity of the problem 
 the speed of the Computer 
 the language in which the algorithm is 

implemented,  
 the compiler/interpreter  
 skill of the programmers etc. 

 
Space Complexity: 

 
The space complexity of a program is the amount of 

memory it needs to run to completion. The space need by a 
program has the following components:  

 
Instruction space: Instruction space is the space needed 

to store the compiled version of the program instructions.  
 
The amount of instructions space that is needed depends on 

factors such as: 
 

 The compiler used to complete the program into machine 
code.  
 

 The compiler options in effect at the time of compilation  
 

 The target computer.  
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Data space: Data space is the space needed to store all 
constant and variable values. Data space has two components:  

 
 Space needed by constants and simple variables in program.  

 
 Space needed by dynamically allocated objects such as 

arrays and class instances.  
 
Environment stack space: The environment stack is used 

to save information needed to resume execution of partially 

completed functions.  
 

Algorithm Specification 
 
Pseudocode  Convention 
 
Pseudocode is an informal high-level description of the operating 
principle of a computer program or other algorithm. 
 
Pseudocode is an informal way of programming description that 

does not require any strict programming language syntax or 
underlying technology considerations.  
 
It is used for creating an outline or a rough draft of a program.  
 
Pseudocode summarizes a program's flow, but excludes 
underlying details.  
 
Pseudocode is not an actual programming language. So it cannot 
be compiled into an executable program.  
 
It uses short terms or simple English language syntaxes to write 
code for programs before it is actually converted into a specific 
programming language.  
 
This is done to identify top level flow errors, and understand the 
programming data flows that the final program is going to use. 

https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Algorithm
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This definitely helps save time during actual programming as 
conceptual errors have been already corrected.  
 
Firstly, program description and functionality is gathered and 
then pseudocode is used to create statements to achieve the 
required results for a program.  
 
Detailed pseudocode is inspected and verified by the designer's 
team or programmers to match design specifications.  
 

Catching errors or wrong program flow at the pseudocode stage 
is beneficial for development as it is less costly than catching 
them later.  
 
Once the pseudocode is accepted by the team, it is rewritten 
using the vocabulary and syntax of a programming language.  
 
The purpose of using pseudocode is an efficient key principle of 
an algorithm.  
 

It is used in planning an algorithm with sketching out the 
structure of the program before the actual coding takes place. 
 
Most of our algorithms using pseudocode resembles C and Pascal. 
 

1. Comments begins with // and continue until the end of line 
 

2. Blocks are indicated with matching braces {  and }  
 
 Collection of simple statements can be represented as block. 
 

3. Identifiers are names for entities and they begin with a 
letter. The data type of the identifiers is not explicitly 
declared in algorithm.  Simple data type such as integer, 
float, char, Boolean and so on. 
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4. Assignment Statement are used to assign values to 
variables. 
 

5. Boolean values- There are two Boolean values true or 
false. In order to produce these values, the logical operators 
and, or and not and the relational operators <,≤,>,≥,= 
and ≠  are provided. 

 
6. Multidimensional arrays-Elements of multidimensional 

arrays are accessed using [ and ]. For example, A is a two 

dimensional array, the [i,j]th element of the array is denoted 
as A[i,j]. Array indices start at 0. 

 
7. Loop Statements-Looping statement such as for, while 

and repeat until are employed in algorithm to do looping 
executions. 

 
  While <condition> do 
   { 
    <statement-1>  

    <statement-2>  
     . 
     . 
     . 
    <statement-n>  
   }   
 
 The statements are executed as long as <condition> is true. 
When <condition> becomes false, the loop is exited.  The value 
of <condition> is evaluated at the top of the loop. 
 
The general form of for loop is 
 
  for variable := value1 to value2 step step do 
   { 
    <statement-1>  
    <statement-2>  
     . 
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     . 
     . 
    <statement-n>  
   }   
Here value1, value2 and step are arithmetic expressions.  The 
clause “step step” is optional and is taken as +1 if it does not 
occur. 
The statements are executed as value1 reaches the value of 
value2. 
 

 
The general form of repeat-until is 
 
       repeat 
    <statement-1>  
    <statement-2>  
     . 
     . 
     . 
    <statement-n>  

       until <condition>  
 
The statements are executed as long as <condition> is false. 
 
The value of <condition> is validated after executing the 
statements. 
 
The instruction break; can be used within any of the looping 
instructions to force exit. 
 
A return statement within any of the above also will result in 
existing the loops. 
 
8. Conditional statements-A conditional statements has the 

following form: 
 
 if <condition> then <statement> 
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 if <condition> then <statement 1> else <statement 2> 
 Here <condition> is a Boolean expression 
 
The general form of case statement is  
 
 case 
  { 
   :<condition-1>:<statement-1> 
   :<condition-2>:<statement-2> 
     . 

     . 
     . 
   :<condition-n>:<statement-n> 
  } 
 

9. Read and Write : Input and Output are done using the 
instructions read and write. No format is used to specify 
the size of input or output quantities. 
 

10. Algorithm: There is only one type of procedure called  

Algorithm,  consists of heading and a body. The general 
form of algorithm 

 
Algorithm Name (<parameter list>) 

 
  where “Name” is the name of the procedure and 
(<parameter list>) is a listing of procedure parameters. The body 
is one or more simple statements enclosed within braces { and }. 
An algorithm may or may not return any values. Simple variables 
to procedures are passed by value. Arrays and records are passed 
by reference. 
  
Recursive algorithm 
 
In computer science, all algorithms are implemented with 
programming language functions.  
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We can view function as something that is called by another 
function.  It executes its code and then returns control to the 
calling function. 
 
Recursive functions can call themselves or it may call another 
function which again calls same function inside it. 
 
The function which calls by itself is called a direct recursive 
function. 
 

The function which calls a function and that function calls its 
called function is called indirect recursive function. 

 
 

Performance analysis 
 
Performance of an algorithm is a process of evaluating the 
algorithm. 
 
In other words, performance of algorithm means predicting the 

resources which are required to an algorithm to perform its task. 
 
 
Generally the performance of an algorithm depends on  
 

1. Whether your algorithm provides exact solution to your 
problem? 

2. Whether it is easy to understand? 
3. Whether it is easy to implement? 
4. How much space is required to solve the problem? 
5. How much time it takes to solve the problem? 

 
Majorly performance analysis of an algorithm is performed by 
using the following measures. 
  

 Space complexity 
 Time complexity 
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Space complexity 
 
The space complexity of an algorithm is the amount of memory it 
needs to run to completion. 
 
For any algorithm, memory is required for the following 
purposes... 
 

1. Memory required to store program instructions 
2. Memory required to store constant values 

3. Memory required to store variable values 
4. And for few other things 

 
Generally, when a program is under execution, it used the 
computer memory for three reasons. 
 

 Instruction space :  
o It is the amount of space used to store compiled 

version of program or instructions. 
 

 Environmental stack :  
 

o It is the amount of space used to store 
information of partially executed functions at the 
time of function call. 

 
 Data space 

o It is the amount of memory used to store all the 
variables and constants. 

 
When we want to perform analysis of an algorithm based on its 
space complexity, we consider Data space only.  That means we 
calculation only memory required to store variables, constant, 
structures, etc. 
 
To calculate the space complexity, we must know the memory 
required to store different data type values. For example, the C 
programming language compiler requires, 
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1. 2 bytes to store integer value 
2. 4 bytes to store floating point value 
3. 1 byte to character value 
4. 6 or 8 bytes to store double value 

 
 
Example 1: 
 
 int sqare(int a) 
 { 

  Return a * a ; 
 }  
 
In the above piece of code, 2 bytes of memory required for 
integer variable ‘a’, and another 2 bytes of memory required to 
return result.  
 
Totally 4 bytes of memory required to execute the above 
example. 
 

And this 4 bytes of memory requirement is constant for any value 
of integer variable ‘a’.   
 
If any algorithm requires a fixed amount of space for all input 
values then that space complexity is said to be constant space 
complexity. 
 
Example 2: 
 
 int sum(int a[], int n) 
 { 
   int sum=0,i; 
  for (i=0;i=n;i++) 
   sum =sum+a[i]; 
  return sum; 
 } 
 
In the above piece of code, it requires, 
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n*2 bytes of memory for integer array variable ‘a[]’ 
2 bytes for variable ‘n’ 
4 bytes for local variables “sum” and “i” (2 bytes for each) 
2 bytes for return value 
 
Totally 2n+8bytes required.  Here the amount for memory 
depends on the input value of ‘n’. 
 
If the amount of memory required by an algorithm is increased 

with the increase of input value then that space complexity is said 
to be linear space complexity. 
  
Time Complexity 
 
The time complexity of an algorithm is the total amount of time 
required by an algorithm to complete its execution. 
 
Generally, running time of an algorithm depends upon, 
 

1. Whether it is running on Single processor machine or Multi 
processor machine. 

2. Whether it is a 32 bit machine or 64 bit machine 
3. Read and Write speed of the machine. 
4. The time it takes to perform  Arithmetic  operations,  logical  

operations, return value and assignment operations etc., 
5. Input data 

 
When we calculate time complexity of an algorithm, we consider 
only input data and ignore the remaining things, as they are 
machine dependent.  
 
We check only, how our program is behaving for the different 
input values to perform all the operations like Arithmetic, Logical, 
Return value and Assignment etc., 
 

 
 



14 

 

To calculate time complexity of an algorithm, we need to define a 
model machine. Let us assume a machine with following 
configuration... 
 

1. It performs sequential execution. 
2. It requires 1 unit of time for Arithmetic and Logical 

operations. 
3. It requires 1 unit of time for Assignment and Return value. 
4. It requires 1 unit of time for Read and Write operations. 

 

Example 1: 
 int sum(int a, int b) 
 { 
  return a+b; 
 }  
 
In above sample code, it requires 1 unit of time to calculate a+b 
and 1 unit of time to return the value.  
 
That means, totally it takes 2 units of time to complete its 

execution.  
 
And it does not change based on the input values of a and b. That 
means for all input values, it requires same amount of time i.e. 2 
units. 
 
If any program requires fixed amount of time for all input values 
then its time complexity is said to be Constant Time 
Complexity. 
 
Example 2 : 
 int  sum(int a[], int n) 
 { 
     int sum = 0,i; 
   for (i = 0, i < n, i++)  
  sum =sum + a[i]; 
  ruturn sum  
 } 

 

 
Time/Operation Repeatation Total 

1 1 1 

1+1+1 1+(n+1)+n 2n+2 

1+1 (1+1)2 2n 

1 1 1 

  4n+4 
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In above calculation Time/Operation  
 
Cost is the amount of computer time required for a single 
operation in each line.  
 
Repeatation is the amount of computer time required by each 
operation for all its repeatations.  
 
Total is the amount of computer time required by each operation 
to execute.  

 
If the amount of time required by an algorithm is increased with 
the increase of input value then that time complexity is said to be 
Linear Time Complexity. 
 
 

PERFORMANCE ANALYSIS 
 
Asymptotic Notations 
Asymptotic notation of an algorithm is a mathematical representation of its 
complexity.   

Generally, there are 3 types of asymptotic notations, they are 
 

1. Big Oh (O) 
2. Big Omega (Ω) 

3. Big Theta (θ) 
1. Big Oh(O) 

 
Big - Oh notation is used to define the upper bound of an algorithm in terms 

of Time Complexity. 

That means Big - Oh notation always indicates the maximum time required 
by an algorithm for all input values. That means Big - Oh notation describes 

the worst case of an algorithm time complexity. 
Big Oh notation can be defined as follows, 

Consider function f(n) the time complexity of an algorithm and g(n) 
is the most signification term.  If f(n) <= C g(n) for all n >= no and   

C > 0 and no > 0, then we represent, 
   f(n) = O(g(n)) 

Example: 
Consider the following f(n) and g(n)... 

f(n) = 3n + 2 ;  g(n) = n 

http://btechsmartclass.com/DS/U1_T3.html
http://btechsmartclass.com/DS/U1_T3.html
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If we want to represent f(n) as O(g(n)) then it must satisfy f(n) <= C x 
g(n) for all values of C > 0 and n0>= 1 

f(n) <= C g(n) 
3n + 2 <= C n 

Above condition is always TRUE for all values of C = 4 and n >= 2.  
By using Big - Oh notation we can represent the time complexity as 

follows... 
3n + 2 = O(n) 

 
2. Big Omega(Ω) 

 
Big - Omega notation is used to define the lower bound of an algorithm in 

terms of Time Complexity. 
That means Big - Omega notation always indicates the minimum time 

required by an algorithm for all input values. That means Big - Omega 

notation describes the best case of an algorithm time complexity. 
Big - Omega Notation can be defined as follows. 

Consider function f(n) the time complexity of an algorithm and g(n) is the 
most significant term.  If f(n) >= C x g(n) for all n >= n0, C > 0 and     

n0 >= 1. Then we can represent f(n) as Ω(g(n)). 
f(n) = Ω(g(n)) 

 
Example: 

Consider the following f(n) and g(n)... 
f(n) = 3n + 2 ;  g(n) = n 

If we want to represent f(n) as O(g(n)) then it must satisfy f(n) <= C x 
g(n) for all values of C > 0 and n0>= 1 

f(n) <= C g(n) 
3n + 2 <= C n 

Above condition is always TRUE for all values of C = 1 and n >= 1.  

By using Big - Omega notation we can represent the time complexity as 
follows... 

3n + 2 = Ω(n) 
 

3. Big Theta(θ) 
 

Big - Theta notation is used to define the average bound of an algorithm in 
terms of Time Complexity. 

 
That means Big - Theta notation always indicates the average time required 

by an algorithm for all input values.  
That means Big - Theta notation describes the average case of an algorithm 

time complexity. 
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Big - Theta Notation can be defined as follows... 

 
Consider function f(n) the time complexity of an algorithm and g(n) is the 

most significant term. If C1*g(n) <= f(n) >= C2*g(n) for all n >= n0, C1, 
C2 > 0 and n0 >= 1. Then we can represent f(n) as Θ(g(n)). 

f(n) = Θ(g(n)) 
Example: 

Consider the following f(n) and g(n)... 
f(n) = 3n + 2 ;  g(n) = n 

if we want to represent f(n) as Θ(g(n)) then it must satisfy C1 g(n) <= f(n) 
>= C2 g(n) for all values ofC1, C2 > 0 and n0>= 1 

C1 g(n) <= f(n) >= C2 g(n) 
C1 n <= 3n + 2 >= C2  

Above condition is always TRUE for all values of C1 = 1, C2 = 4 and n >= 1.  

By using Big - Theta notation we can represent the time complexity as 
follows... 

 
3n + 2 = Θ(n) 

 

Divide and conquer method: 
 
In divide and conquer approach, the problem in hand, is divided into smaller 
sub-problems and then each problem is solved independently. When we 

keep on dividing the sub problems into even smaller sub-problems, we may 
eventually reach a stage where no more division is possible.  

The solution of all sub-problems is finally merged in order to obtain the 
solution of an original problem. 
Divide and conquer approach is a three step approach, 

1. Divide/Break 

 This step involves breaking the problem into smaller sub-problems.  
 Sub-problems should represent a part of the original problem.  

 This step generally takes a recursive approach to divide the 
problem until no sub-problem is further divisible.  

 At this stage, sub-problems become atomic(tiny) in nature but still 

represent some part of the actual problem. 
 

2. Conquer/Solve 

 This step receives a lot of smaller sub-problems to be solved.  
 Generally, at this level, the problems are considered 'solved' on 

their own. 
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3. Merge/Combine 

 When the smaller sub-problems are solved, this stage recursively 

combines them until they formulate a solution of the original 
problem.  

 This algorithmic approach works recursively and conquer & merge 
steps works so close that they appear as one.  

Some of the Divide and Conquer approach algorithms are, 
 

1. Binary Search 
2. Finding maximum and minimum 

3. Merge Sort 

4. Quick Sort 

What is search?  Search is an operation or technique that helps to find a 

place of given element or value in the list. 
Any search is said to be successful or unsuccessful depending upon 

whether the element that is being searched is found or not. 
Some of the standard searching techniques are: 

 Linear or Sequential Search 

 Binary Search 

Linear Search: 

This is the simplest method for searching.  
In this technique of searching, the element to be found in searching the 

elements to be found is searched sequentially in the list.  
This method can be performed on a sorted or an unsorted list (usually 

arrays).  
In case of a sorted list searching starts from 0th element and continues until 

the element is found from the list or the element whose value is greater than 

(assuming the list is sorted in ascending order), the value being searched is 
reached. 

As against this, searching in case of unsorted list also begins from the 
0thelement and continues until the element or the end of the list is reached. 

 
1. Binary Search/Half Interval Search/ Algorithm 

 
Binary search is a very fast and efficient searching technique. It 

requires the list to be in sorted order 
 

Binary search is a search algorithm that finds the position of a target 
value within a sorted array 

 

https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Sorted_array
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Binary Search Algorithm compares the input element x with the value 
of the middle element in array. If the values match, return the index of 

middle.  
 

Otherwise, if x is less than the middle element, then the algorithm 
recurs (happen against) for left side of middle element, else recurs for 

right side of middle element. 
 

For example: 
 

Input:  
 

List 
 

 

Case 1: Searching Element: 12 
 Step 1 : 

 Search Element (12) is compared with middle element (50) 
 

 
 

Both are not matching. And 12 is smaller 
than 50.  So we search only in the left side sub list (i.e 10,12,20,32) 

 
Step 2 : 

 Search Element (12) is compared with middle element (12) 
Both are matching.  So the resulting index is 1 

 
Case 2 : Searching Element: 99 

Step 1 : 

 Search Element (80) is compared with middle element (50) 
Both are not matching. And 80 is greater than 50.  So we search only 

in the right side sub list (i.e 55,65,80,99,110) 
 

 
 

Step 2 : 
 Search Element (99) is compared with middle element (80) 

Both are not matching. And 99 is greater than 80. So we search again 
the right side sub list (i.e 99,110) 

 
 

 
Step 3 : 

0 1 2 3 4 5 6 7 8 9 

10 12 20 32 50 55 65 80 99 110 

0 1 2 3 

10 12 20 32 

5 6 7 8 9 

55 65 80 99 110 

8 9 

99 110 
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 Search Element (99) is compared with middle element (99) 
 Both are matching. So the resulting index is 8. 

 
Binary search algorithm is implemented using following steps... 

 

Step :1 Read the search element from the user 

Step :2 Find the middle element in the sorted list 

Step :3 Compare, the search element with the middle element in the sorted list. 

Step :4 If both are matching, then display "Given element found!!!" and terminate 
the function 

Step :5 If both are not matching, then check whether the search element is smaller 
or larger than middle element. 

Step :6 If the search element is smaller than middle element, then repeat steps 2, 
3, 4 and 5 for the left sublist of the middle element. 

Step :7 if the search element is larger than middle element, then repeat steps 2, 3, 
4 and 5 for the right sublist of the middle element. 

Step :8 Repeat the same process until we find the search element in the list or until 
sublist contains only one element. 

Step :9 If that element also doesn't match with the search element, then display 
"Element not found in the list!!!" and terminate the function. 

 

 
 

 
 

 

 
 

 
 

 
 

1 Algorithm  BinSrc(a,i , l, x) 

//Given an array a[i, l] of elements  in non decreasing order and 1 <= i <= l 

//x is the searching element 

2 { 

3    if i = l 

4       { 

5           If a[i] = x then return i; 

6              { 

7              else return 0; (Searching element not in a given array) 

8              } 

9     Else 

10           {  // reduce problem in to sub problem. 

11               mid :=[ (i+l)/2]; 

12                 If a[mid] = x then return mid;             

13                 else  

14                       if x < a[mid] then BinSrc(a,I,mid-1,x); 

15                       else BinSrc(a,mid+1,l,x); 

16            } 
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Finding Maximum and Minimum : 
 

Another problem that can be solved simply by divide and conquer 

approach is finding maximum and minimum items in a set of n elements. 
Naïve Method: 
Algorithm MaxMinElement(number[]) 

Max := number[1]; 
Min := number[1]; 

for (I = 2 to n) do  
  if number[i] > max then max := number[i]; 

  if number[i] < min the min    := number[i]; 
return Max,Min 

 
The number of comparison in this naïve(inexperienced) method is 2n-2 

Divide and Conquer Method: 
In this approach, the array is divided into two halves.  

Then using recursive approach maximum and minimum numbers in each 
halves are found. 

Later, return the maximum of two maxima of each half and the minimum 
of two minima of each half. 

 
 

 

Recursively finding maximum and minimum 

     
         1,9,60,-8 

      1,5,22,-8                6,9,60,17 
  1,3,22,-5     4,5,15,-8  6,7,60,17  8,9,47,31  

1 2 3 4 5 6 7 8 9 

22 13 -5 -8 15 60 17 31 47 

1 Algorithm  MaxMin(i,j,max,min) // I, j are integers, 1 <=i <= j <= n a[i,j] 

2 { 

3    If i =j  then max := min := a[i] ; // small problem 

4    else If i = j -1 then  

5            { 

6                 If a[i] < a[j] then max := a[j]; min =a[i]; 

7                 else  max := a[i]; min = a[j]; 

8            } 

9       Else  

10          {   //problem P is not small divide problem P into subproblems 

11          Mid := [(i+j)/2]; 

12          MaxMin(i,mid,max,min); 

13          MaxMin(mid+1,j,max1,min1); 

14          If max < max1 then max := max1 

15          If min > min1  then min := min1 

16       } 

17  } 
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 1,2,22,13 3,3,-5,-5  
      Tree of recursive calls of MaxMin 

Merge Sort Algorithm 
 

Merge sort is a sorting technique based on divide and conquer 

technique. With worst-case time complexity being Ο(n log n), it is one 
of the most respected algorithms.  

 
The algorithm divides the array in two halves; recursively sorts them 

and finally merges the two sorted halves. 
 

Merge sort keeps on dividing the array into equal halves until it can no 
more be divided. By definition, if it is only one element in the array, it 

is sorted. Then, merge sort combines the smaller sorted lists keeping 
the new list sorted too. 
 

For example : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

110 32 12 55 50 80 65 99 90 

110 32 12 55 50 80 65 99 90 

110 32 80 65 99 90 
12 55 50 

90 
50 110 32 110 12 55 80 65 99 

12 55 32 110 50 65 80 90 99 

12 32 50 55 110 65 80 90 99 

12 32 50 55 65 80 90 99 110 

12 32 55 110 50 65 80 90 99 

Step :1 Check if it is only one element in the array it is already sorted, return 

Step :2 Divide the array or list recursively into two halves until it can no more be divided 

Step :3 Merge the smaller lists into new list in sorted order 

 

http://en.wikipedia.org/wiki/Merge_Sort
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Quick Sort : 
 

Quick sort (sometimes called partition-exchange sort) is an efficient sorting 
algorithm, serving as a systematic method for placing the elements of 

an array in order. 
 

Quick sort is a sorting algorithm. The algorithm picks a pivot element, 
rearranges the array elements in such a way that all elements smaller than 

the picked pivot element move to left side of pivot, and all greater elements 

1 Algorithm  MergeSort(low, high) 

2 { 

3    If  low < high 

4      { 

5         mid := [(low+high)/2] 

6         MergeSort(low,mid); 

7         MergeSort(mid+1,high); 

8         Merge(low,mid,high); 

9     } 

10 } 

1 Algorithm  Merge(low,mid,high) 

2 { 

3 h:=low; I :=low; j := mid+1; 

4 while a[h] < a[j] and j <= high 

5 { 

6     If a[h] <= a[j] 

7        { 

8            b[i] := a[h]; h :=h + 1 

9        } 

10    else 

11      { 

12         b[i] = a[j]; j := j+1; 

13      }  

14 I:=i+1; 

15 } 

16 If h > mid then 

17 For k := j to high do  

18  {  

  

19     b[i] = a[k]; i := i +1; 

20 Else 

21   { 

22    For k := h to mid do 

23      { 

24       B[i] := a[k]; i =i + 1; 

25      } 

26 For k := low to high do  a[k] := b[k]; 

27 } 

https://en.wikipedia.org/wiki/Algorithm_efficiency
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Quick_Sort
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move to right side. Finally, the algorithm recursively sorts the sub arrays on 
left and right of pivot element. 

 
There are many different versions of quick Sort that pick pivot in different 

ways. 
 Always pick first element as pivot. 

 Always pick last element as pivot (implemented below) 
 Pick a random element as pivot. 

 Pick median as pivot. 
 

 
 

 
 

a[] 0 1 2 3 4 5 6 

value 10 80 30 90 40 50 70 

 

Low = 0; high = 6; pivot = arr[high]=70 
 

Initialize index of smaller element, i = low-1 = 0 – 1 = -1 
 

I = -1, j = 0, pivot = 70 
 
Loop J Condition Action I Resulted array 

1 0 a[j] < pivot Do I++ 

Swap(a[i],a[j] 

0 arr[]= {10,80,30,90,40,50,70} 

2 1 a[j] > pivot Do nothing 0 arr[]= {10,80,30,90,40,50,70} 

3 2 a[j] < pivot Do i++ 

Swap(a[i],a[j] 

1 arr[]= {10,30,80,90,40,50,70} 

4 3 a[j]>pivot Do nothing 1 arr[]= {10,30,80,90,40,50,70} 

5 4 a[J]<pivot Do I++ 2 arr[]= {10,30,40,90,80,50,70} 

1 Algorithm  Partition (a[],low,high) 

2 { 

3    Pivot = a[high]; 

4    i = low-1  //index on smaller element 

5   For (j=low; j <= high-1; j++) 

6     { 

7     If a[j] <= pivot then 

8        { 

9           i++   // increment index of smaller element 

10          Swap a[i] and a[j] 

11       } 

12     } 

13    Swap a[i+1] and a[high] 

14   Return (i+1) 

1 Algorithm  QuickSort(a[],low,high) 

2 //Sorts the elements a[low]….a[high] which in 

the global array a[1:n]  

3 { 

4    If  low < high 

 //divide P into two subproblems 

4      { 

5 //Pivot is the partitioning index, arr[pi] is now 

at the right place// 

5         pi := Partition(a[],low,high) 

6         QuickSort(a[],p,pi-1); //before pivot 

7         QuickSort(a[],pi+1,q); // after pivot 

8     } 

9 } 
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Swap(a[i],a[j] 

6 5 a[j]<pivot Do I++ 

Swap(a[i],a[j] 

3 arr[]= {10,30,40,50,80,90,70} 

7 Swap(a[i+1),a[high]) arr[]= {10,30,40,50,70,90,80} 

Now the j value is less than high-1 that j = 5 and high-1 is also 5,loop ends 

 

Now pivot is positioned in its place 
 

Now take the last element a[6] = 80 as our new pivot do the partition again. 
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Unit - II  
Greedy Methods: Knapsack Problem, Minimum Cost 

Spanning Trees, Optimal Storage on Tapes and Single Source 
Shortest Path Problem. 
 

Greedy Methods 
 

In an algorithm design there is no single algorithm helps to solve all 
computation problems.  

 
Different problems require the use of different kinds of techniques.  

 

A good programmer uses all these techniques based on the type of 
problem.  

 
Some commonly-used techniques are: 

 
 Divide and conquer 

 Randomized algorithms 

 Greedy algorithms  
 Dynamic programming 

 

What is a 'Greedy algorithm'? 
 

A greedy algorithm, as the name suggests, always makes the choice that 
seems to be the best at that moment.  

 
This means that it makes a locally-optimal choice in the hope that this choice 

will lead to a globally-optimal solution. 
 

A greedy algorithm is a simple, intuitive (sensitive) algorithm that is used in 
optimization problems. Greedy algorithms are quite successful in some 

problems, 
 

The algorithm makes the optimal choice at each step as it attempts to find 

the overall optimal way to solve the entire problem. 
 

Knapsack Problem 
 

The knapsack problem or rucksack(backpack) problem is a problem 
in combinatorial optimization: Given a set of items, each with a weight and a 

https://en.wikipedia.org/wiki/Combinatorial_optimization
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value, determine the number of each item to include in a collection so that 
the total weight is less than or equal to a given limit and the total value is as 

large as possible.  
 

The objective of Knapsack problem is to fill the knapsack with items to get 
maximum benefit (value or profit) without crossing the weight capacity of 

the knapsack. 
 

 
Example :  

 
Assume that we have a knapsack with max weight capacity, W = 16. 

 
Our objective is to fill the knapsack with items such that the benefit (value 

or profit) is maximum. 

 
Consider the following items and their associated weight and value: 

 
 

 
 

 
 

 
 

 
 

Steps :  

1. Calculate value per weight for each item (we can call this value density) 
2. Sort the items as per the value density in descending order 
3. Take as much item as possible not already taken in the knapsack 

1. Density = value/weight 
 

 

 

 

 

Item Weight Value 

I-1 6 6 

I-2 10 2 

I-3 3 1 

I-4 5 8 

I-5 1 3 

I-6 3 5 

Item Weight Value Density 
Value/weight 

I-1 6 6 1.000 

I-2 10 2 0.200 

I-3 3 1 0.333 

I-4 5 8 1.600 

I-5 1 3 3.000 

I-6 3 5 1.667 
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2. Sort the items as per density in descending order 
 

 
 
 
 
 
 
 
 
 
 

Now we will pick items such that our benefit is maximum and total weight of the selected 
items is at most W. 

 

 

Objective is to fill the knapsack with items to get maximum benefit without 
crossing the weight limit W = 16. 
 

Maximum benefit without crossing the weight limit 
 

How to fill the knapsack table? 
 

Is Weight(i)+ Total Weight <= w, if its yes, then take whole item 
else 

   (w-total weight)/wi= 16-15=1/3=0.333 
endif 

     
 

 
 

 
 

 

 
 

So, total weight in the knapsack = 16 and total value inside it = 22.333336 
 
Greedy algorithms don’t always yield optimal solutions but, when they do, 
they’re usually the simplest and most efficient algorithms available. 

Item Weight Value Density 

Value/weight 

I-5 1 3 3.000 

I-6 3 5 1.667 

I-4 5 8 1.600 

I-1 6 6 1.000 

I-3 3 1 0.333 

I-2 10 2 0.200 

Item Weight Value Total Weight Benefit 

I5 1 3 1 3 

I6 3 5 4 8 

I4 5 8 9 16 

I1 6 6 15 22 

I3 1 0.333 16 22.333 
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Algorithm : 
 
 

Algorithm Knapsock 

Step : 1 For each item Ij,compute the ratio vj/wj (i.e., value per unit weight), 
1 ≤ j ≤ n. 

Step : 2 Sort the items in decreasing order of their ratios.  

Step : 3 Set TotalWeight = 0, TotalBenefit = 0 , W=WeightLimit(16) 

 For (i=0 to n) 

    If item[i].weight+TotalWeight <= W 

           TotalWeight=TotalWeight+item[i].weight 

           TotalBenefit = TotalBenefit +item[i].benefit 

    Else 

          Wt    = W-TotalWeight; 

          Value = wt * (item[i].benefit/item[i].weight) 

         TotalWeight = TotalWeight + Wt 

         TotalBenefit = TotalBenefit + value 

       Break; (exit loop) 

    Endif 

Step : 4 Output the contents of Knapsack  

 
                 Weight Limit = 16 ; TotalWeight = 0, TotalBenefit = 0 

 
 
 
 
 
 
 
 
 

i Checking Condition TotalWeight Total Benefit 

0 If (0+3 <= 16 1 3 

1 If (1+3 <= 16 1+3 = 4 3+5 =8 

2 If(4+5 <= 16 4+5=9 8+8 = 16 

3 If(9+6 <=16 9+6=15 16+6 = 22 

4 If(15+1 > 16) Wt = 16-15 = 1 
15+1 = 16 

Value = 1/3=0.333 
22+0.333=22.333 
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Minimum Cost Spanning Trees- Network Design 
 
What is graph? 

 
A graph is a pictorial representation of a set of objects where some pairs of 

objects are connected by links. The interconnected objects are represented 
by points termed as vertices, and the links that connect the vertices are 

called edges. 

 
Formally, a graph is a pair of sets (V, E), where V is the set of vertices 

and E is the set of edges, connecting the pairs of vertices. Take a look at the 

following graph – 
 

 
 

 
 

 
                       Fig.(A) Connected Graph        Fig.(B) Disconnected Graph 

 

In the above graph, 

V = {A, B, C, D, E} 

E = {Ab, Ac, Bd, Cd, De} 

 
Connected Graph: A graph is connected when there is a path between 

every pair of vertices. In a connected graph, there are no unreachable 
vertices. 

 
Disconnected Graph: A graph G is said to be disconnected if there exist 

two nodes in G such that no path in G has those nodes as endpoints. 
 

What is Tree? 

 
A tree is an undirected graph in which any two vertices are connected 

by exactly one path.  

 

What is a Spanning Tree? 

 

A 

 

C 

 

B 

 

D 

 
E 

 

A 

 

C 

 

B 

 

D 

 
E 

 

https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Path_(graph_theory)
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A spanning tree is a subset of Graph G, which has all the vertices covered 
with minimum possible number of edges. Hence, a spanning tree does not 

have cycles and it cannot be disconnected. 
 

By this definition, we can draw a conclusion that every connected and 
undirected Graph G has at least one spanning tree. A disconnected graph 

does not have any spanning tree, as it cannot be spanned to all its vertices. 
 

Given an undirected and connected graph G=(V,E), a spanning tree of the 

graph G is a tree that spans G (that is, it includes every vertex of G) and is a 
sub graph of G (every edge in the tree belongs to G). 

 
A Spanning Tree T of an undirected graph G is a sub graph that is 

a tree which includes all of the vertices of G, with minimum possible number 
of edges.  

 

Definition: 
 

Let G = (V,E) be an undirected connected graph. A sub graph t = (V,E’) of G 
is spanning tree iff t is a tree. 

 
For example : Fig.1 is a undirected connect graph, and Fig.1(a),1(b) and 

1(c) are three spanning trees of graph Fig.1(a) 
 

 
  

 
 

 
   Fig.1             Fig.1(a)          Fig.1(b)       Fig.1(c) 

 

 
We found three spanning trees off one complete graph. A complete 
undirected graph can have maximum nn-2 number of spanning trees, 

where n is the number of nodes.  

 
In the above addressed example, 33−2 = 3 spanning trees are possible. 

 
Properties of Spanning Tree 
 

 A connected graph G can have more than one spanning tree. 
 

 All possible spanning trees of graph G, have the same number of 

edges and vertices. 

https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
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 The spanning tree does not have any cycle (loops). 

 
 Removing one edge from the spanning tree will make the graph 

disconnected, i.e. the spanning tree is minimally connected. 

 
 Adding one edge to the spanning tree will create a circuit or loop, i.e. 

the spanning tree is maximally acyclic (acyclic means without cycles). 

 
 Spanning tree has n-1 edges, where n is the number of nodes 

(vertices). 
 

 From a complete graph, by removing maximum e - n + 1 edges, we 

can construct a spanning tree. 

 
 A complete graph can have maximum nn-2 number of spanning trees. 

 

What is a Minimum Cost Spanning Tree? 
 

In a weighted graph, a minimum spanning tree is a spanning tree that has 
minimum weight than all other spanning trees of the same graph. In real-

world situations, this weight can be measured as distance, congestion, traffic 
load or any arbitrary value denoted to the edges. 

 

The standard application is to a problem like phone network design.  
 

You have a business with several offices;  
 

you want to lease phone lines to connect them up with each other; and  
 

The phone company charges different amounts of money to connect 
different pairs of cities.  

 
You want a set of lines that connects all your offices with a minimum total 

cost.  
 

It should be a spanning (across) tree, since if a network isn’t a tree you can 
always remove some edges and save money. 

 

General applications of MST are : 
 

 Telephone 
 Electrical 

 Hydraulic 
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 TV cable 
 Computer 

 Road 
 

Kruskal’s Algorithm: 

Kruskal's algorithm is a minimum spanning tree algorithm that takes a graph 

as input and finds the subset of the edges of that graph which 

 form a tree that includes every vertex 

 has the minimum sum of weights among all the trees that can be 

formed from the graph 

The steps for implementing Kruskal's algorithm are as follows: 

Algorithm Kruskalsmst 

Step:1 Sort all the edges in non-decreasing order of their weight. 

 
Step :2 Pick the smallest edge. Check if it forms a cycle with the spanning 

tree formed so far. If cycle is not formed, include this edge. Else, 

discard it. 
Step :3 Keep adding edges until we reach all vertices 

. 

 
 

   
 

 
 

 
 

 
 

 
 

 
 

 

 
1. Pick edge 6-7 

 
 

Weight Edges 

1 6-7 

2 2-8 

2 5-6 

4 0-1 

4 2-5 

6 6-8 

7 2-3 

7 7-8 

8 0-7 

8 1-2 

9 3-4 

10 4-5 

11 1-7 

14 3-5 

1 

7 6 

2 

8 

4 

1 

14 

8 7 

10 8 

7 
6 

0 

1 

7 

2 

6 

3 

5 

4
}

} 

9 

11 

4 

2 

https://en.wikipedia.org/wiki/Minimum_spanning_tree
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2.  Pick edge 2-8 
 

 
 

 
 

 
3.  Pick edge 6-5: No cycle is formed, include it. 

 
 

 

 
 

 
 

4. Pick edge 0-1: No cycle is formed, include it. 
 

 
 

 
 

 
 

 
5. Pick edge 2-5: No cycle is formed, include it. 

 

 
 

 
 

 
 

 
6. Inclusion of edge 6-8 results cycle, So reject it 

  

2 

8 

2 1 

7 

2 

6 5 

8 

2 

1 

7 6 

2 

2 1 

7 

2 

6 5 

8 

2 

0 

1 

4 

0 

1 

4 

4 

2 

2 1 

7 6 5 

8 

2 
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7. Pick edge 2-3: No cycle is formed, include it. 

 
 

 
 

 
 

 
 

8. Inclusion of edge 7-8 results cycle, So reject it 
9. Pick edge 2-3: No cycle is formed, include it. 

 
 

 

 
 

 
 

 
10. Inclusion of edge 1-2 results cycle, So reject it 

11. Pick edge 3-4: No cycle is formed, include it. 
 

 
 

 
 

 
 

 

 
 

Since the number of edges included equals (V – 1), the algorithm stops 
here. 

 
1 t= θ; 
2. While (t <less than n-1 edges) and E ≠ θ do 

3. { 

4.      Choose an Edge (v,w) from E of lowest cost; 

5.      If (v,w) does not create cycle in t then  

          Add (v,w) to t; 
     else  

          discard (v,w); 

6. } 

0 

1 

4 

4 

2 

2 1 

7 6 5 

8 

2 

3 

7 

0 

1 

4 

4 

2 

2 1 

7 6 5 

8 

2 

3 

7 

8 

0 

1 

4 

4 

2 

2 1 

7 6 5 

8 

2 

3 

7 

8 

4 

9 

Total Weight is :  

4+8+1+2+4+2+7+9=37 
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Prim’s Algorithm 

 
 Prim’s algorithm is also a Greedy algorithm.  

 
 It starts with an empty spanning tree.  

 
 The idea is to maintain two sets of vertices.  

 
 The first set contains the vertices already included in the MST, the 

other set contains the vertices not yet included.  
 

 At every step, it considers all the edges that connect the two sets, and 
picks the minimum weight edge from these edges.  

 

 After picking the edge, it moves the other endpoint of the edge to the 
set containing MST. 

 
Algorithm: 

 
Algorithm Primsmst 

Step 1:  Create a set mstSet that keeps track of vertices already included in 
MST. 

Step 2: Assign a key value to all vertices in the input graph. Initialize all 

key values as INFINITE. Assign key value as 0 for the first vertex 
so that it is picked first. 

Step 3: While mstSet doesn’t include all vertices 

              
            Pick a vertex u which is not there in mstSet and has  

            minimum key value. 
 

            Include u to mstSet. 
 

            Update key value of all adjacent vertices of u. To update       
            the key values, iterate through all adjacent vertices. For    

            every adjacent vertex v, if weight of edge u-v is less than  
            the previous key value of v, update the key value as weight    

            of u-v 
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1. The set mstSet is initially empty and keys assigned to vertices are  
 

             mstSet = {0, INF, INF, INF, INF, INF, INF, INF}  

 
2. Now pick the vertex with minimum key value. The vertex 0 is picked, 

include it in mstSet.  
 

     mstSet = {0} 

 
3. Adjacent vertices of 0 are 1 and 7 and its corresponding key values are 

4 and 8. So the lowest key value 4 of vertex 1 is included in mstSet. 
 

         mstSet = {0,1} 

 
 

 

4. Now the open vertices are 0 and 1. 

 Adjacent veritex of 0 is 7 with key value 8  
 

 Adjacent verticies of 1 are 2 and 7 with key values 8, 11 

respectively. 
 

The lowest key value here is 8. So randomly we select vertex 7 

here and vertex 7 is included in mstSet 
 

    mstSet = {0,1,7} 
 
 

 

 

 

 

 

2 

8 

4 

1 

14 

8 7 

10 8 

7 

6 

0 

1 

7 

2 

6 

3 

5 

4
}

} 

9 

11 

4 

2 

0 

1 4 

7 

0 

1 

4 

7 8 
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5. Now the open vertices are 1 and 7.  
  

 Adjacent verticies of 1 is 2 with key values 8. The vertex 7 is 

considered here because it is already in the mstSet. 
 

 Adjance vertices of  7 are 6 and 8 with key values 1 and 7 

respectivly. 
 

So The lowest key value vertex 6 is included in mstSet. 
 

 mstSet = {0,1,7,6} 
 

 

 

 

 

 

 

6. Now the open vertices are 1 and 6.  

 
 Adjacent verticies of 1 is 2 with key values 8.  

 
 Adjance vertices of  6 are 5 and 8 with key values 2 and 6 

respectivly. 
 

So The lowest key value(2) vertex 5 is included in mstSet. 
 

 mstSet = {0,1,7,6,5} 
 

 

 

 

 

 

 

7. Now the open vertices are 1 and 5.  
 

 Adjacent verticies of 1 is 2 with key values 8.  

 
 Adjacent verticies of 5 are 2,3,4 with key values 4,14,10 

respectively.  

 
The lowest key value (4) of vertex 2 in included in mstSet. 

 

0 

1 

4 

7 6 

0 

1 

4 

7 6 5 

8 

1 

8 
1 2 
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mstSet = {0,1,7,6,5,2} 
 

 
 

 
 

 
 

8. Now the open vertices are 2 and 5.  
 

 Adjacent verticies of 2 are 3 and 8 with key value 7 and 2 

respectively. 
 

 Adjacent verticies of 5 are 3,4 with key values 14,10 
respectively.  

 

       The lowest key value (2) of vertex 8 is included in mstSet. 
 

mstSet = {0,1,7,6,5,2,8} 
 

 
 

 
 

 
9. Now the open vertices are 2 and 5.  

 
 Available Adjacent vertex of 2 is 3 with key value 7. 

 
 Available Adjacent verticies of 5 are 3,4 with key values 14,10 

respectively.  

 
The lowest key value (7) of vertex 3 is included in mstSet. 

 
    mstSet = {0,1,7,6,5,2,8,3} 

 
 

 
 

 
 

 
 

 

2 

0 

1 

4 

7 5 8 
1 2 

6 

4 

2 

8 

0 

1 

4 

7 5 8 
1 2 

6 

4 
2 

3 2 

8 

0 

1 

4 

7 5 8 
1 2 

6 

4 
2

  

7 
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10. Now the open vertices are 3 and 5 

 
 

 
 

 
 

 
 Available Adjacent vertex of 3 is 4 with key value 9. 

 Available Adjacent vertex of 5 is also 4 with key value 10. 
 

So the lowest key value (9) of vertex 4 is included in mstSet. 
 

mstSet = {0,1,7,6,5,2,8,3,4} 

 
 

 
 

 
 

 
 

The Total weight is : 4+8+1+2+4+2+7+9 = 37 
 

 

Optimal Storage on Tapes 
 
Given ‘n’ programs to be stored on tape, the lengths of these programs are 

i1, i2….in respectively. Suppose the programs are stored in the order of i1, 
i2…in. We have a tape of length L i.e. the storage capacity of the tape is L. 

We are also given ‘n’ programs where length of each program is i is Li. 

Let ‘Tj’ be the time to retrieve program ‘ij’. 

It is now required to store these programs on the tape in such a way so that 

the mean retrieval time is minimum. MRT is the average tome required to 

retrieve any program stored on this tape. 

Assume that the tape is initially positioned at the beginning. 

‘Tj’ is proportional to the sum of all lengths of programs stored in front of 

the program ‘ij’. 

3 2 

8 

0 

1 

4 

7 5 8 
1 2 

6 

4 
2

  

7 

1 2 

2

  

7 
3 2 

8 

0 

1 

4 

7 5 8 6 

4 
4 

9 
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The goal is to minimize MRT (Mean Retrieval Time). 

MRT = 1/n ∑ Ti
𝑛
𝑖=0  

Example 1:  

1. Number of programs(n) = 3, Length of programs (l1, l2, l3) = (5, 10, 

3). 

2. We can store these 3 programs on the tape in any order but we want 

that order which will minimize the MRT. 

3. Suppose we store the programs in order (L1, L2, L3). 

4. Then MRT is given as (5+(5+10)+(5+10+3))/3=38/3. 

 

Consider the following Table 
 

Ordering Mean Retrieval Time (MRT) 

L1,L2,L3 5+(5+10)+(5+10+3)=38/3 

L1,L3,L2 5+(5+3)+(5+3+10) = 31/3 

L2,L1,L3 10+(10+5)+(10+5+3) = 43/3 

L2,L3,L1 10+(10+3)+(10+3+5) = 41/3 

L3,L1,L2 3+(3+5)+(3+5+10) = 29/3 

L3,L2,L1 3+(3+10)+(3+10+5) = 34/3 

It should be seen that the minimum MRT of 29/3 is obtained in case of 

(L3,L1,L2).  Hence the optimal solution is achieved if the programs are 

stored in increasing order of their length. 

Algorithm MRT 

Step 1:  Sum = 0; 

Step 2: For (i=1 ;i <= n,i++) 

Step 3: { 

Step 4:    For (j=1;j<=I,j++) 

Step 5:     { 

Step 6:       Sum = sum + Lj; 

Step 7:     } 

Step 8: MRT = sum/n; 

Step 9: } 

The time complexity of this algorithm including the time to do sorting 

is O(n2). 
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After getting the minimum MRT, the programs are stored in tape. 

Solution: Sorted order is 3,5,10 (L3,L1,L2) 
 

3 5 10 

 

Algorithm for more than one tape : 

 

Algorithm Store(n,m) 

 // n is the number of programs, m is the number of tapes 

Step 1: { 
Step 2 : Sort the programs in ascending order using any of the sorting algorithm 

Step 3 :     J = 1; //Next tape to store on  

Step 4 :  For I  = 1 to n do; 

Step 5 :    { 

Step 6 :     Write (“append program”, i ,”to permutation of tape”,j); 

Step 7 :      j = (j+1) mod m 

Step 8 :    } 

Step 9 :  } 

 

Example:  
 

Let us assume, we want to store files of lengths (in MB) 
 {12, 34, 56, 24, 11, 34, 34, 45} 

 
Sorted files are 

 
{11, 12, 24, 34, 34, 34, 45, 56} 

Now distribute the files: 

Inserting 11    Inserting 12 

Tape 1 11   

Tape 2    

Tape 3    

Inserting 24    Inserting 34 

Tape 1 11   

 Tape 2 12   

Tape 3 24   

Tape 1 11   

Tape 2 12   

Tape 3    

 

Tape 1 11 34  

Tape 2 12   

Tape 3 24   
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Inserting 34      Inserting 34 

 
 

 
 

Inserting 45               Inserting 56 
   

 
 

 
 

The time complexity of this algorithm is o(n log n).   

  

Tape 1 11 34  

Tape 2 12 34  

Tape 3 24   

 

Tape 1 11 34  

Tape 2 12 34  

Tape 3 24 34  

 

Tape 1 11 34 45 

Tape 2 12 34  

Tape 3 24 34  

 

Tape 1 11 34 45 

Tape 2 12 34  

Tape 3 24 34  

 

Tape 1 11 34 45 

Tape 2 12 34  

Tape 3 24 34  

 

Tape 1 11 34 45 

Tape 2 12 34 56 

Tape 3 24 34  
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Single Source Shortest Path Problem 
 
The shortest path problem is the problem of finding a path between 
two vertices (or nodes) in a graph such that the sum of the weights of its 

constituent edges is minimized. 
 

The single-source shortest path problem, in which we have to find shortest 
paths from a source vertex v to all other vertices in the graph. 

 
 

Algorithm ShortestePath(v,cost,dist,n) 

 v- source vertex, dist[j] –shortest path between v to j, cost – overall 
crossed paths, n – number of vertices 

Step 1: { 
Step 2 :     For I = I to n do  

Step 3 :          S[i] = false; dist[i] := cost[v,i] 

Step 4 :  } 

Step 5 : { 

Step 6 :  S[v] = True ; S[v] = 0;  

Step 7 : { 

Step 8 :     for  j := 2 to n-1 do 

Step 9 :    { 

Step 10:        S[j] = True;  

Step 11:         for (each k adjacent to j and s[k] = false) do  

Step 12:            { 

Step 13:                If dist[k]> dist[j] + cost[j,k] then  

Step 14:                    dist[k] := dist[j] + cost[j,k] 

Step 15:              } 

Step 16:        } 
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Unit - III  
Dynamic Programming: Multistage Graphs, 0/1 knapsack 

and Traveling Salesman Problem. Basic Traversal and Search 
Techniques: Techniques for Binary Tree, Techniques for Graphs: 
Depth First Search and Breadth First Search - Connected 
Components and Spanning Tree – Bi-connected Components and 
DFS. 
 

 

Dynamic Programming 

 
Dynamic Programming (also known as Dynamic Optimization) is a 
method for solving a complex problem by breaking it down into a 
collection of simpler sub problems, solving each of those sub 
problems just once, and storing their solutions.  
 
The next time the same sub problem occurs, instead of re-
computing its solution, one simply looks up the previously 
computed solution, thereby saving computation time as well as 
storage space.  
 
Dynamic Programming is an algorithm design method that can be 
used when the solution to a problem can be viewed as the result 
of a sequence of decisions. 
 
Dynamic programming algorithms are often used for optimization. 

 

A dynamic programming algorithm will examine the previously 
solved sub-problems and will combine their solutions to give the 
best solution for the given problem. 

 
Multistage Graphs 
 
A multistage graph G=(V,E) which is a directed graph. In this 
graph all the vertices are partitioned into the k stages where 
k>=2. Usually multistage graphs are weighted graphs. 
 
 

https://en.wikipedia.org/wiki/Optimization
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In multistage graphs, starting vertex is called as source vertex 
and the ending vertex is called as sink(go under). 
 
In multistage graph problem we have to find the shortest path 
from source to sink. 
 
For Example : 
 
The Shortest path in Multistage Graphs 
 

Dynamic Programming approach – Forward Approach 
 
 
 
 
 
 
 
 
 

 
 
 
d(S,T)= min{1+d(A,T), 2+d(B,T), 5+d(C,T)} 
 
d(A,T) = min{4+d(D,T), 11+d(E,T))} 
    = min{4+18, 11+13} 
    = min{22,24} 
    = 22 
 
d(B,T) = min{ 9+d(D,T), 5+d(E,T), 16+d(F,T) 
    = min{ 9+18, 5+13, 16+2} 
    = min{ 27, 18, 18} 
    = 18 
 
d(C,T) = min{2+d(F,T)} 
    = min{2+2} 
          = 4 

9 

 S 

 A 

 C 

 B 

 

 D 

 E 

 F 

 T 

1 

4 

18 

2 

2 

5 

2 

16 
13 

11 

5 
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d(S,T) = min{1+23, 2+18, 5+4} 
    = min{24, 20, 9} 
          = 9     d(S,T) = S    C    F    T 
  
 

1. Identify source and destination nodes. 
 

2. Find all possible paths to reach destination from source and 
sum of weights of adjacent nodes. 

 
3. The path giving the least weight will be the minimum 

spanning path. 
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 Dynamic Programming approach – Backward Approach 
 
Backward Approach is just the reverse of forward approach, here 
Source node and the next node is considered at every stage. 
 
d(S,A) = 1 
d(S,B) = 2 
d(S,C) = 5 
 
d(S,D) = min{dist(S,A) + dist(A,D), dist(S,B) + dist(B,D)} 

  = min{1+4= 5, 2+9=11} = 5 
 
d(S,E) = min{dist(S,A) + dist(A,E), dist(S,B) + dist(B,E) 
  = min{1+11=12, 2+5=7} = 7 
 
d(S,F) = min{dist(S,B) + dist(B,F), dist(S,C) + dist(C,F)} 
  = min{2+16 = 18, 5+2 =7} = 7 
 
Dist(S,T) = min{d(S,D)+d(D,T), d(S,E)+d(E,T), d(S,F)+d(F,T)} 
   = min{5+18 = 23, 7+13 = 20, 7+2= 9} 

        = 9          d(S,T) = S     C      F     T 
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0/1 knapsack 

Earlier we have discussed Fractional Knapsack problem using 

Greedy approach. We have shown that Greedy approach gives an 

optimal solution for Fractional Knapsack.  

In this dynamic programming problem we have n items each with 

an associated weight and value (benefit or profit). 

The objective is to fill the knapsack with items such that we have 

a maximum profit without crossing the weight limit of the 

knapsack. 

Since this is a 0-1 knapsack problem hence we can either take an 

entire item or reject it completely. We can not break an item and 

fill the knapsack. 

Point to remember 

 In this problem we have a Knapsack that has a weight limit 

W. 

 

 There are items i1, i2, ..., in each having weight w1, w2, … 

wn and some benefit (value or profit) associated with it v1, 

v2, ... vn 

 

 Our objective is to maximize the benefit such that the total 

weight inside the knapsack is at most W. 

 

 Since this is a 0-1 Knapsack problem so we can either take 

an entire item or reject it completely. We can not break an 

item and fill the knapsack. 
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Example:  
Assume that we have a knapsack with max weight capacity      

W= 5.  Our objective is to fill the knapsack with items such that 

the benefit (value or profit) is maximum. 

Following table contains the items along with their value and 

weight. 

Item i 1 2 3 4 

Value  100 20 60 40 

Weight  3 2 4 1 

 
Total Items : 4 

Total capacity of the knapsack is 5 

Now we create a value table v[i,w], where I denotes number of  

items. W denotes weights of the items. Rows denotes the items 

and column denotes the weight. 

 

v[i,w] Wt=0 1 2 3 4 5 

Item =0 0 0 0 0 0 0 

1(3) 0 0 0 100 100 100 

2(2) 0 0 20 100 100 120 

3(4) 0 0 20 100 100 120 

4(1) 0 40 40 100 140 140 
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If w[i] > w then 

 V[i,w]= v[i-1,w] 

Else 

 V[i,w] = max{ v[i-1,w], val[i] + v[i-1,w-wt[i] ]} 

Endif 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item-1 (3,100) (i=1) Weight 

V[1,0] =V[1-1,0] = 0 0 

V[1,1] =V[1-1,1] = 0 1 

V[1,2] =V[I-1,2]  = 0 2 

V[1,3] = Max{0,100+v[0,3-3] =100 3 

V[1,4] = Max{0, 100+v[0,4-3]=100 4 

V[1,4] = Max{0,100+v[0,5-3]=100 5 

 

Item-2 (2,20) (i=2) Weight 

V[2,0]= V[2-1,0]=v[1,0] = 0 0 

V[2,1]= V[2-1,1]=V[1,1]=0 1 

V[2,2]= Max{v[1,2]=0, 20+v[1,2-2]=20} = 20 2 

V[2,3]= Max{v[1,3]=100, 20+v[1,3-2] =20}=100 3 

V[2,4]=max {v[1,4]=100,20+v[1,4-2]=20}=100 4 

V[2,5]=max{v[1,5]=100,20+v[1,5-2]=100=120}=120 5 

 

Item-3 (4,60) (i=3) Weig

ht 

V[3,0]= v[3-1,0]=v[2,0]= 0 0 

V[3,1]= V[3-1,1]=V[2,1]=0 1 

V[3,2]= v[3-1,2] =v[2,2]=20 2 

V[3,3]= v[3-1,3]=v[2,3] = 100 3 

V[3,4]=max{v[3-1,4]=100, 60+v[3-1,4-3]=v[2,1]=0}=100 4 

V[3,5]=max{v[3-1,5]=120,60+v[3-1,5-3]=v[2,2]= 20=80}=120 5 

 

Item-4 (1,40) (i=4) Weigh

t 

V[4,0]= v[4-1,0]=v[3,0]= 0 0 

V[4,1]= Max{ v[4-1,1]=0, 40+v[4-1,1-1]=v[3,0]=0=40}=40 1 

V[4,2]= Max{v[4-1,2]=20, 40+v[4-1,2-1]=v[3,1]=0=40}=40 2 

V[4,3]= Max{v[4-1,3]=100,40+v[4-1,3-1]=v[3,2]=20=60}=100 3 

V[4,4]= Max{v[4-1,4]= 100, 40+v[4-1,4-1]=v[3,3]=100=140}=140 4 

V[4,5]= Max{v[4-1,5]=140, 40+v[4-1,5-1]=v[3,4]=100=140}=140 5 
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Maximum value earned v[4,5] = 140 

Algorithm 01knapsackvaltable (v, w, n, W)  
 
for w = 0 to W do  
   v[0, w] = 0  
endfor 
 
for i = 1 to n do  
   v[i, 0] = 0 
endfor 
 
   for w = 1 to W do  
      if w[i] > w then  

v[i, w] = v[i-1, w]  
      else  
          if (val[i]+v[i-1,w-w[i]) > v[i-1,w] 
              v[i, w] = v[i] + v[i-1, w-w[i]]  
    else 

v[i, w] = v[i-1, w]  
          endif 
       endif 
   endfor 
 
Items that were put inside the knapsack are found using the  
following rule 
 
Algorithm ItemsPick 
Set i =n and w= W 
While i > 0 and w > 0 then 

   If v[i,w] # v[i-1,w] then 
     Mark the ith item and Add to knapsack  
     Set i  = i – 1 
     Set w = w-wt[i] 
  Else 
    Set I = I -1 
  Endif 
Endwhile 

i w V[i,w] V[I-1,w] Knapsack 

4 5 140 120 4 

3 4 100 100 4 

2 4 100 100 4 

1 4 100 0 4,1=140 

 



53 

 

 
So, items we are putting inside the knapsack are 4 and 1. 
 
Travelling Salesman Problem  
 
Given a list of cities and the distances between each pair of cities, 
what is the shortest possible route that visits each city and 
returns to the origin city? 
 
 

 
 
 
 
 
 
 
 
 
 

 
Naive Solution: 
 

1) Consider city 1 as the starting and ending point. 
2) Generate all (n-1)! Permutations of cities. 
3) Calculate cost of every permutation and keep track of 

minimum cost permutation. 
4) Return the permutation with minimum cost. 

 
n-1! = (4-1)! = 3 X 2 X 1 =6 
 

1,2,3,4,1 = 10+35+30+20 = 95 
1,2,4,3,1 = 10+25+30+15 = 80 
1,3,2,4,1 = 15+35+25+20 = 95 
1,3,4,2,1 = 15+30+25+10 = 80 
1,4,2,3,1 = 20+25+35+15 = 95 
1,4,3,2,1 = 20+30+35+10 = 95  

  

1 

2 3 

  4 

10 

35 

15 

25 30 

20 

https://www.geeksforgeeks.org/write-a-c-program-to-print-all-permutations-of-a-given-string/
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Dynamic Programming Approach 
 
Let’s starts from node 1  
 
 
C(4,phi) = 20 ; C(3,phi) =15 ; C(2,phi) =10    
 
C(2,{3,4}) = min( d(2,3)+C(3,{4}), d(2,4)+C(4,{3} ) 
C(3,{2,4}) = min( d(3,2)+C(2,{4}), d(3,4)+C(4,{2} ) 

C(4,{2,3}) = min( d(4,2)+C(2,{3}), d(4,3)+C(3,{2} ) 
 
C(2,{3}) = d(2,3)+C(3,phi) = 35 + 15 = 50 
C(2,{4}) = d(2,4)+C(4,phi) = 25 + 20 = 45 
C(3,{2}) = d(3,2)+C(2,phi) = 35 + 10 = 45 
C(3,{4}) = d(3,4)+C(4,phi) = 30 + 20 = 50 
C(4,{2}) = d(4,2)+C(2,phi) = 25 + 10 = 35 
C(4,{3}) = d(4,3)+C(3,phi) = 30 + 15 = 45 
 
C(2,{3,4}) = min(35+50), 25+45 ) = min(85,70)=70 

C(3,{2,4}) = min(35+45), 30+35 ) = min(80,65)=65 
C(4,{2,3}) = min(25+50), 30+45 ) = min(75,75)=75 
 
 
C(1,{2,3,4}) = min(d(1,2)+ C(2,{3,4)), d(1,3) + C(3,{2,4}, 
     d(1,4) + C(4,{2,3}) 
       = min(10+70, 15+65, 20+75) 
       = min(80,80,95) = 80 
  

 1 2 3 4 

1 0 10 15 20 

2 10 0 35 25 

3 15 35 0 30 

4 20 25 30 0 
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Algorithm Dynamic_Programming_TSP 
 
C ({1}, 1) = 0  
for s = 2 to n do  
   for all subsets S Є {1, 2, 3, … , n} of size s and containing 1  
      C (S, 1) = ∞  
   endfor 
   for all j Є S and j ≠ 1  
      C (S, j) = min {C (S – {j}, i) + d(i, j) for i Є S and i ≠ j}  

   Endfor 
endfor 
Return min (C({1, 2, 3, …, n}, j) + d(j, i)) 
 

Basic Traversal and Search Techniques 
 

The techniques discussed under this topic is divided into two 
categories, 

o Techniques for Binary Trees (Traversal methods) 

o Techniques for Graphs (Search methods) 

Trees 
Tree is a non-linear data structure which organizes data in 
hierarchical structure and this is a recursive definition. 
Tree data structure is a collection of data (Node) which is 
organized in hierarchical structure and this is a recursive 
definition 
Terminology used in trees 

Root The top node in a tree. 

The first node is called as Root Node. 
Every tree must have root node. 
Root node is the origin of tree data structure. 

Parent In a tree data structure the node which is 
predecessor of any node is called as PARENT 
NODE. 

Child Node In a tree data structure, the node which is 
descendant(successor) of any node is called 
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as CHILD Node. 

Leaf In a tree, elements with no children are called 
leaves 

 Edge 
 

In a tree data structure, the connecting link 
between any two nodes is called as EDGE.  In a tree 
with 'N' number of nodes there will be a maximum 
of 'N-1' number of edges. 

 

Tree is a hierarchical data structure. Main uses of trees include 
maintaining hierarchical data, providing moderate access and 

insert/delete operations.  
 
Main applications of trees include: 

1. Manipulate hierarchical data. 
2. Make information easy to search (see tree traversal). 
3. Manipulate sorted lists of data. 
4. As a workflow for compositing digital images for visual 
effects. 
5. Router algorithms 
6. Form of a multi-stage decision-making (see business 

chess). 
 

Binary Trees 
In a normal tree, every node can have any number of children.  
 
Binary tree is a special type of tree data structure in which every 
node can have a maximum of 2 children.  
 
One is known as left child and the other is known as right child. 
 

Definition: A tree in which every node can have a maximum of 
two children is called as Binary Tree. 
 
In a binary tree, every node can have either 0 children or 1 child 
or 2 children but not more than 2 children 
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Binary Tree Traversal 
In computer science, tree traversal (also known as tree search) is 
a form of graph traversal and refers to the process of visiting 
(checking and/or updating) each node in a tree data structure, 
exactly once.  
Such traversals are classified by the order in which the nodes are 
visited. 
Displaying (or) visiting order of nodes in a binary tree is called as 

Binary Tree Traversal. 
 
Techniques for Binary Tree Traversal 
There are three types of binary tree traversals. 

1. In - Order Traversal 

2. Pre - Order Traversal 
3. Post - Order Traversal 

1. In-Order Traversal (Left, Root, Right) 

Algorithm Inorder(tree) 
 
   1. Traverse the left subtree,  (i.e., call Inorder(left-subtree) 
   2. Visit the root. 
   3. Traverse the right subtree, (i.e., call Inorder(right-subtree)) 

H-D-I-B-E-A-F-J-C-G 

A 

B C 

D E F

  

G 

H I J 

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Graph_traversal
https://en.wikipedia.org/wiki/Tree_(data_structure)
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2. Pre-Order Traversal ( Root, Left, Right) 

Algorithm Preorder(tree) 
1. Visit the root. 
2. Traverse the left subtree, (i.e.,call Preorder(left-subtree) 

3. Traverse the right subtree, (i.e.,call Preorder(right-subtree)) 

 

A-B-D-H-I-E-C-F-J-G 
 

3. Post-Order Traversal (Left, Right, Root) 

Algorithm Postorder(tree) 
   1. Traverse the left subtree, i.e., call Postorder(left-subtree) 

   2. Traverse the right subtree,(i.e.,call Postorder(right-

subtree) 

   3. Visit the root. 

H-I-D-E-B-J-F-G-A 

Graph Traversal 
Graph traversal is technique used for searching a vertex in a 
graph.  
The graph traversal is also used to decide the order of vertices to 
be visit in the search process.  
A graph traversal finds the edges to be used in the search 
process without creating loops that means using graph traversal 
we visit all vertices of graph without getting into looping path. 
Techniques for Graph Tree Traversal 
There are two graph traversal techniques and they are as,  

1. Depth First Search (DFS) 

2. Breadth First Search (BFS) 

 
1. Depth First Search (DFS) 

 
DFS traversal of a graph, produces a spanning tree as final 
result. Spanning Tree is a graph without any loops. We 
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use Stack data structure with maximum size of total number of 
vertices in the graph to implement DFS traversal of a graph. 

 
Steps to be followed in DFS traversal 

 
Rules to be followed 
Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. 

Display it. Push it in a stack. 
 
Rule 2 − If no adjacent vertex is found, pop up a vertex from the 

stack. (It will pop up all the vertices from the stack, which do not 
have adjacent vertices.) 
 
Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty. 

 
Example : 
 
 
 
 
 

Step 1 : Define a Stack of size total number of vertices in the graph. 

 
Step 2 : Select any vertex as starting point for traversal. Visit that vertex and 

push it on to the Stack. 

 
Step 3 : Visit any one of the adjacent vertex of the vertex which is at top of 

the stack which is not visited and push it on to the stack. 

 
Step 4 : Repeat step 3 until there are no new vertex to be visit from the 

vertex on top of the stack. 

 
Step 5 : When there is no new vertex to be visit then use back tracking and 

pop one vertex from the stack. 

 
Step 6 : Repeat steps 3, 4 and 5 until stack becomes Empty. 
Step 7 : When stack becomes Empty, then produce final spanning tree by 

removing unused edges from the graph. 

 

A 

D 

B 

E 

C 

F 

G 
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DFS Traversal  
 

 
Stack became empty so stop DFS Traversal 
 
 
Final result of DFS spanning tree is as follows 

Step 1 : Select a A as starting vertex,   Push ‘A’ into stack 
 

Step 2 : Visit any adjacent vertex of A Which is not visited (B), Push newly 

visited vertex B on to the stack. 
 

Step 3 : Visit any adjacent vertex of B Which is not visited (C), Push newly  
visited vertex C on to the stack. 

 

Step 4 : Visit any adjacent vertex of C Which is not visited (E), Push newly 
visited vertex E on to the stack. 

 

Step 5 : Visit any adjacent vertex of E Which is not visited (D), Push newly 

visited vertex D on to the stack. 
 

Step 6: There is no new vertex to be visited from D, So POP D from stack. 

 

Step 7 : Visit any adjacent vertex of E Which is not visited (F), Push newly 

visited vertex F on to the stack. 
 

Step 8 : Visit any adjacent vertex of F Which is not visited (G), Push newly 

visited vertex G on to the stack. 
 

Step 9 : There is no new vertex to be visited from G, So POP G from stack. 
 

Step 10 : There is no new vertex to be visited from F, So POP F from stack. 

 

Step 11 : There is no new vertex to be visited from E, So POP E from stack. 

 

Step 12 : There is no new vertex to be visited from C, So POP C from stack. 
 

Step 13 : There is no new vertex to be visited from B, So POP B from stack 
 

Step 14 :  There is no new vertex to be visited from A, So POP A from stack 
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2. Breadth First Search (BFS) 

 
BFS traversal of a graph, produces a spanning tree as final 
result. Spanning Tree is a graph without any loops.  
 
We use Queue data structure with maximum size of total 
number of vertices in the graph to implement BFS traversal of 
a graph. 
 

 
Steps to be followed in BFS traversal 

D Step -5 

E Step -4 

C Step -3 

B Step -2 

A Step -1 

G Step -8 

F Step -7 

E Step -6 

G 

F 

E 

C 

B 

A 

Step 1 : Define a Queue of size total number of vertices in the graph. 

 
Step 2 : Select any vertex as starting point for traversal. Visit that vertex 

and insert it into the Queue. 

 

Step 3 : Visit all the adjacent vertices of the vertex which is at front of the 
Queue which is not visited and insert them into the Queue. 

A 

D 

B 

E 

C 

F 
G 

Step 10 

 

 

E 

C 

B 

A 
 

 

 

 

 

 

Step 11 

 

 

 

C 

B 

A 
 

 

 

 

 

 

Step 12 

 

 

 

 

B 

A 
 

 

 

 

 

 

Step 9 

 

F 

E 

C 

B 

A 
 

 

 

 

 

 

Step 13 

 

 

 

 

 

A 
 

 

 

 

 

 

Step 14 
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Rules to be followed 
Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited.     

              Display it. Insert it in a queue. 
 
Rule 2 − If no adjacent vertex is found, remove the first vertex  

              from the queue. 
 
Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty. 
 

Example : 
 

 

 

 

 

 

BFS Traversal  
 

 
Step 4 : When there is no new vertex to be visit from the vertex at front of 

the Queue then delete that vertex from the Queue. 

 
Step 5 : Repeat step 3 and 4 until queue becomes empty. 

 
Step 6 : When queue becomes Empty, then produce final spanning tree by 

removing unused edges from the graph 

Step 1 : Select the vertex A as starting vertex,  Insert ‘A’ into queue 

 

Step 2 : Visit all adjacent vertices of A which are not visited (D,E,B). Insert 
newly visited vertices D,E,B into queue and delete A from the queue. 

 

Step 3 : Visit all adjacent vertices of D Which are not visited (no vertices). 

Delete D from queue. 
 

Step 4 : Visit all adjacent vertices of E Which are not visited (C,F). Insert 

newly visited vertices C & F into queue and delete E from the queue. 
 

Step 5 : Visit all adjacent vertices of B Which are not visited (no vertices). 
Delete C from the queue. 

 

Step 6: Visit all adjacent vertices of C Which are not visited (G). Insert newly 

A 

D 

B 

E 

C 

F 

G 
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Stack became empty so stop BFS Traversal 
 
Final result of BFS spanning tree is as follows 
 
 

 

 

 

 

 

 

Step :1 

A 
      

 

Step :2 
 D E B 

   

 

Step :3 
  E B 

   
 

Step :4 
   B C F  

 

Step :5 
    C F  

 

Step :6 
     F G 

 

visited vertex G into queue and delete C from the queue. 
 

Step 7 : Visit all adjacent vertices of F Which are not visited (no vertices). 
Delete F from the queue. 

 

Step 8 : Visit all adjacent vertices of G Which are not visited (no vertices). 
Delete G from the queue. 

 

A 

D 

B 

E 

C 

F 

G 
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Step :7 
      G 

 

Step :7 

 

 
Connected Components 

 
In graph theory, a connected component (or just component) of 
an undirected graph is a sub graph in which any 
two vertices are connected to each other by paths, and which is 
connected to no additional vertices in the super graph. 

In graph theory, if A is a sub graph of B, then B is said to be 

a super graph of A. 

 

 

 

 
 
 
 
 
 
 

 
 
  

       

 

 

 

 

 

Connected G1 

 

 

 

 

                                                Connected Graph G2 

      

                                   Graph G 

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Subgraph_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Connected_graph
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#supergraph
https://en.wikipedia.org/wiki/Glossary_of_graph_theory#supergraph
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Spanning Tree 
 
In Graph Theory, a spanning tree T of an undirected graph G is a 
sub graph, that is, a tree which includes all of the vertices of G, 
with minimum possible number of edges.  
 
In general, a graph may have several spanning trees, but a graph 
that is not connected will not contain a spanning tree. 
 

A spanning tree is a subset of Graph G, which has all the vertices 
covered with minimum possible number of edges. Hence, a 
spanning tree does not have cycles and it cannot be 
disconnected. 
 
 

 
 

 
 

 
 

     Fig.1               Fig.1(a)         Fig.1(b)            Fig.1(c) 
 

 

  

https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Connected_graph
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Bi-connected Components and DFS 

Articulation Point 
 
A Vertex v in a connected graph G is an articulation point iff (if 
and only if) the deletion of vertex v together with all edges 
incident t v disconnects the graph into two or more non empty 
components. 
 
In the following connected graph G, vertex 2 is an articulation 

point, as the deletion of vertex 2 and edges (1,2), (2,3), (2,5) , 
(2,7) and (2,8) leaves behind two disconnected non empty 
components 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Graph G              Result of deleting vertex 2 
 

The other articulations points of Graph G are vertex 5 and 3.   

Note that if any of the remaining vertices is deleted from graph G 

then exactly one component is remains. 

Bi-connected graph: 
 

1 

4 2 

3 

5 

7 

8 

6 

10 9 

5 

7 

8 

6 
1 

4 

3 

10 9 
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 A graph G is biconnected iff it contains no articulation point. 
The above graph G is not biconnected. The following graph G1 is 
biconnected. 
 
A bi-connected component of a graph is a maximal bi-connected 

subgraph. 

 
 
 
 
 

 
 

 Graph G1 
 

The presence of articulation point in a connected graph can be 
undesirable feature in many cases.   
 
For example, if our graph G represents a communication network 
with vertices representing communication stations and the edges 

representing communication lines then the failure of a 
communication station i which is an articulation point would result 
in loss of communication to points other than station i.  
 
On the other hand, if G has no articulation point then if any 
station i fails, we can still communicate between every pair of 
stations not including station i.  

 

Hence the efficient algorithm is required  to test if a connected 
graph is biconnected.   

 
For the case of graphs that are not biconnected, then this 
algorithm will identify all the articulation points. 
 
Identification of articulation points 
 
Articulation Points: observations 
 

1 

4 

2 

3 

5 
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1. The root of the DFS tree is an articulation point if it has two 
or more children. 
 

2. Any other internal vertex v in the DFS tree, if it has a sub 
tree rooted at a child of v that does not have an edge which 
climb ‘higher’ than v, then v is an articulation point. 

 
Simple Algorithm 
 
Given G(V,E) that is connected 

For each u ∈ V 

G’ = Remove u from G 
If G’ is not connected 
 u is an articulation point 
endif 

endfor 
 
The time complexity of this simple algorithm is O(V * (V+E)) 
 
Algorithm Finding_DFS_Articulation 

For each v in V do 
   { 
 If (pred[v] == null)   

{ //v is a root 
   If (|Adj(v) | > 2) 
    v is an articulation point 
  } else 
     for each w in Adj(v) do  

{ 
 If (low(w) >= dfn[v]) 

  v is an articulation point 
} 

 } 
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  Graph G        Graph G (a) 
DFS Spanning tree of Graph G 

 

 
Graph G (a) show a depth first spanning tree of the graph G.  
 
In the figures, there is a number outside the each vertex.  These 
numbers corresponds to the order in which a depth first search 
visits these vertices.  This number referred to as the depth first 
number (DFN) of the vertex. 
 
Thus, DFN(1)  = 1, DFN(4) = 2 and DFN(6) = 8. 
 
In the graph G (a), solid edges form the depth first spanning 
tree. These edges are called tree edges.  Broken edges(i.e all 
remaining edges) are called back edges. 
 
Depth First spanning tree have a property that if (u,v) is any 
edge in graph G, the relation between u and v is either u is an 
ancestor of v or v is an ancestor of u.   

1 
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3 

4 

5 

6 
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8 

9 

10 

1 

4 2 

3 

5 
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8 

6 

10 9 
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6 
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3 

4 
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10 

4 

2 
3 
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2 
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Low(u) = min {dfn(u), min{L(w) // w is a child of u}, 

Min {DFN{w} //u,w is a back edge. } 
 
Articulation points : How to climb up : 
  

1. A sub tree can climb to the upper part of the tree by a 
back edge. 
 

2. A vertex can only climb up to its ancestor 

 
 

Vertex 1 2 3 4 5 6 7 8 9 10 

DFN 1 6 3 2 7 8 9 10 5 4 

Low 1 1 1 1 6 8 6 6 5 4 

Child 4 5 9,10 3 6,7 0 8 0 0 0 

low(w) >= 
dfn[v]) 

 

root 6,6 
(AP) 

5,3 
(AP) 

1,1 
(AP) 

8,7 
(AP) 

0 6,9 0 0 0 

 
 

Applications of Bi-connected graphs 
 
Biconnected graphs are used in the design of power grid 

networks.  

 

Consider the nodes as cities and the edges as electrical 

connections between them, you would like the network to be 

robust and a failure at one city should not result in a loss of 

power in other cities. This can be ensured by making the graph 

biconnected. 

 

It is also used in social network analysis to try and identify the 

most influential nodes in the network. 
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Bi-connected components are used in communications Networks.  

 

The vertices represent communication stations and the edges 

represent communication links. Now suppose that one of the 

stations that is an articulation point fails. The result is a loss of 

communication not just to and from that single station, but also 

between certain other pairs of stations. 
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Unit – IV 
  

Backtracking: 8 Queens Problems, Sum of Subsets, Graph 
Colouring, Hamiltonian Cycle and Knapsack Problem. 
 

 

Backtracking is a general algorithm for finding all (or some) 
solutions to some computational problems, notably constraint 
satisfaction problems that incrementally builds candidates to the 
solutions. 

 
Backtracking is a technique used to solve problems with a 

large search space, by systematically trying and eliminating 
possibilities. 

 
A standard example of backtracking would be going through 

a maze.  Other examples are crossword, verbal arithmetic, 
sudoko and many other puzzles. 

 
Backtracking is a methodical way of trying out various 

sequences of decisions, until you find one that “works”. 
 
 

8 Queens Problem 
 

The eight queens puzzle is the problem of placing 
eight chess queens on an 8×8 chessboard so that no two queens 
threaten each other. Find an arrangement of 8 queens on a single 
chess board such that no two queens are attacking one another. 
 

Thus, a solution requires that no two queens share the same 
row, column, or diagonal. In chess, queens can move all the way 
down any row, column or diagonal (so long as no pieces are in 
the way). 
 

Due to the first two restrictions, it's clear that each row and 
column of the board will have exactly one queen.  
 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Constraint_satisfaction_problem
https://en.wikipedia.org/wiki/Constraint_satisfaction_problem
https://en.wikipedia.org/wiki/Chess
https://en.wikipedia.org/wiki/Queen_(chess)
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The idea is to place queens one by one in different columns, 
starting from the leftmost column. When we place a queen in a 
column, we check for clashes with already placed queens. In the 
current column, if we find a row for which there is no clash, we 
mark this row and column as part of the solution. If we do not 
find such a row due to clashes then we backtrack and return 
false. 
 

1) Start in the leftmost column 
 

2) If all queens are placed  return true 
 

3) Try all rows in the current column.  Do following for 
every tried row. 
 

a) If the queen can be placed safely in this row then 
mark this [row, column] as part of the solution 
and recursively check if placing queen here leads 
to a solution. 
 

b) If placing queen in [row, column] leads to a 
solution then return true. 

 
c) If placing queen doesn't lead to a solution then 

unmark this [row, column] (Backtrack) and go to 
step (a) to try other rows. 

 
4) If all rows have been tried and nothing worked, return false 

to trigger backtracking. 
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Procedure PLACE(k) 
Global X(1:k) 
Integer i, k 
For I = 1 to k do 
 If X(i) = X(k)   // two queens in the same column 
  Or Abs(X(i)-X(k)) = Abs(i-k)  // in the same diagonal 
  Return false 
 Endif 
Endfor 
Return true 

 
Algorithm NQueens(k,n)  
Integer k, n, X(1:n) 
X(1) = 0; k = 1  // k is the current row, X(k) is current column 
While k > 0  // for all rows 
 X(k) = X(k) + 1  //move the next column 
 While X(k) <= n and not PLACE(k) do  
  X(k) = X(K) + 1 
       Repeat 
 If X(k) <= n   // is position is found 

  Then if k =n  // is solution is complete   
   Then print X 
  Else 
   K = k + 1; 
   X(k) = 0    // go to next row 
  Endif 
 Else 
  k = k -1  //backtrack 
 endif 
repeat 
end Nqueens 
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Sum of Subsets 
 
Sum of subsets problem is to find subset of elements that 

are selected from a given set whose sum adds up to a given 
number. It is considered that the given set contains, 

 
o non-negative values. 
o no duplicates are presented. 

Example 
 

Let S be a set and given sum m = 35 
 
 S= {5,7,10,12,15,18,20} 
 
 
 
 
 
   

 

    
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

X4=1 

0, 87 

5, 82 

12, 75 

22, 65 

34, 53 

49, 38 34, 38 

22,53 

65 

X1=1 

X2=1 

X3=1 

X4=1 

X5=1 
X5=0 

X4=0 

37,38 

X5=1 

12, 65 

65 

X3=0 
5, 75 

X2=0 

X3=1 

15,65 

27,53 

42,38 

X5=1 X5=0 

27,38 

15,53 

30,38 

X5=1 

15, 53 

X5=1 

33, 54 

X6=1 

15, 35 

X6=0 

X7=1 

35, 34 

X6=1 

48,20 30,20 

X6=0 

15,38 

X5=0 

15,20 

X6=0 

X7=1 

35,0 

X4=0 
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So the subsets that add ups to sum 35 are, 
 {{15,20},{18,7,10}, {5,10,20}, {18,12,5}} 
 

Example: 

Solve following problem and draw portion of state space tree M = 35,  

S = (5, 7, 10, 12, 15, 18, 20) 

S= {5,7,10,12,15,18,20} 
 
Start with 5th element (15) 

Subset Sum Description 

Empty {} 0 Initial 

{5} 5 Add first element 

{5,7} 12  (12 < m) Add next element 

{5,7,10} 22  (22 < m) Add next element 

{5,7,10,12) 34  (34 < m) Add next element 

{5,7,10,12,15) 49  (49 > m) Backtrack 

{5,7,10,12,18} 52  (52 > m) Backtrack 

{5,7,10,12,20} 54  (54 > m) Bbacktrack 

{5,10} 15  (15 < m) Add next element 

{5,10,12) 27  (15 < m) Add next element 

{5,10,12,15} 42  (42 > m) Backtrack 

{5,10,12,18} 45  (45 > m) Backtrack 

{5,10,12,20} 47  (47 > m) Backtrack 
{5,10,15} 30  (30 < m) Add next element 
{5,10,15,18} 48  (48 > m) Backtrack 

{5,10,15,20} 50  (50 > m) Backtrack 

{5,10,18} 33  (33 < m) Add next element 

{5,10,18,20} 53  (53 < m Backtrack 

{5,10,20} 35  Solution obtained m= 35 

{5,12} 17  (17 < m) Add next element 

{5,12,15} 32  (32 < m) Add next element 

{5,12,15,18} 50  (50 > m) Backtrack 

{5,12,18} 35 Solution obtained m= 35 
{5,15} 20  (20 < m) ADD next element 

{5,15,18} 38  (38 > m) Backtracking 

{5,15,20} 40 (40 > m) Backtracking 

{5,18} 23 (23 < m) Add next element 

{5,18,20} 43 (43 >m) Backtracking 

{5,20} 25  (25 < m) Add next Element, but no element 
present, so Backtracking 
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Algorithm: 

Let, S is a set of elements and m is the expected sum of subsets. 

Then: 

1. Start with an empty set. 

2. Add to the subset, the next element from the list. 

3. If the subset is having sum m then stop with that subset as 

solution. 

4. If the subset is not feasible or if we have reached the end of 

the set then backtrack through the subset until we find the 

most suitable value. 

5. If the subset is feasible then repeat step 2. 

6. If we have visited all the elements without finding a suitable 

subset and if no backtracking is possible then stop without 

solution. 

  

Subset Sum Description 

Empty {} 0 Initial 

{15} 15 Add 5th  element 

{15,18} 33  (33 < m) Add next element 

{15,18,20} 53  (53 > m) Backtrack 

{15,20} 35   Solution obtained m= 35 
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Recursive Backtracking algorithm for sum of subsets problem 
 
Algorithm SUMOFSUBS(s, k, r) 
 
//initiations 
Global integer M, n // M-Capacity, n – number of elements in set 
Global real W(1:n)  //Given Set 
Global boolean X(1:n) // if x(1) is either 1(included in tree) or 0 
Real r, s     //s be cumulative sum,   

Integer k, j 
//generate left child.  Note that s+W(k) <=M 
 
X(k) = 1 
If s+X(k) = M //subset found 
 return subset 
else 
  if s+w(k)+w(k+1) <= M 
 call SUMOFSUBS(s+w(k), k+1, r-W(k)) 

  endif  
endif 
 
//generate right child.  Note that s+W(k) >M 
 
If s+r-W(k) >= M  and s+W(k+1) <= M 
       X(k) = 0 
 call SUMOFSUBS(s, k+1, r-W(k)) 
endif  
 

Where 

   s =   ∑ (𝑊(𝑗)𝑥 𝑋(𝑗))𝑘−1
𝑗=1  

 

   r =   ∑ (𝑊(𝑗))𝑘−𝑛
𝑗=𝑘  
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Graph Coloring 
 
Let G be a graph and m be a positive integer.  It is to find 
whether the nodes of G can be colored in such a way that no two 
adjacent nodes have the same color yet only m colors are used. 
 
Given a graph of vertices and edges, we want to colour the nodes 
in such a way that no two adjacent vertices share a same colour, 
using fewest number of colours. 
 
 

The problem has two versions, 
 

o m-coloring decision problem :  
we want know it can be coloured with the given colours 
or not? 

o m-coloring optimization Problem :  
we want to know minimum how many colours are 
required for colouring the vertices. 

 
m is called chromatic number. 
 
The minimum number of colors required for vertex coloring of 
graph ‘G’ is called as the chromatic number of G, denoted by 
X(G). 
 

 
Problems  

 

1. How many ways the vertices can be coloured and what 
are the possible colours. 
 
2. Colours are given we want to know whether the graph 
can be coloured with those vertices or not. 
 
3. Colours are not given we want to how many colour we 
need colour the vertices 
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If d is the degree of given graph G, then it can be colored with 
(d+1) colors. 
 
The degree of a vertex of a graph is the number of  edges  
incident to the vertex, with loops counted twice. 
 
 
For Example: 
 

Given graph G 
 
 
 
m = 3 {R,G,B} 
 
 
State Space Tree 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
=1+3+(3X3)+(3X3X3)+(3X3X3X3) 
=Cn 

 

 

 

 

 

1 RGRG 

2 RGRB 

4 RGBG 

5 RBRG 

6 RBRB 

1 

4 

2 

3 

X4=B X4=G 

X4=G 

X4=G 

X3=G X3=B 

X4=R 
X3=R 

X 

 

X1=R 

 

X 

X2=R 

 

 
X2=G 

X2=B 

 

X3=R 

X 
V 

V 

X4=B 

X  

X V 

 
X3=R 

X 

X4=R 
V 

V 

X4=B 

https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Incidence_(graph_theory)
https://en.wikipedia.org/wiki/Loop_(graph_theory)
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Algorithm GraphColour(k) 
 For C = 1 to m 
    If  issafe(k,c) 
    X[k] = c; 
   If  k+1 < n 
    GraphColour(k+1) 
   Else 
    Print x[] 
   Endif 
  Endif 

 End for 
  

Where, 
 k is the node we are going to colour in the level of 

recursion. 
 
X[k] is the array that holds the current colour at each node. 
 

 

Algorithm issafe(k,c) 

 For j=1 to n 
   If G[k][j] == 1 and c ==x[j] 
  Return false 
   Endif 
 End for    

Return true 
 

Adjacency Matrix(G) 
 
 

 
 
 
 
 
 
 
 

N 1 2 3 4 

1 1 1 0 1 

2 1 1 1 0 

3 0 1 1 1 

4 1 0 1 1 
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The time complexity of this backtracking algorithm is O(mn). 
Where m is the number of colours and n is the number of 
vertices. 
 
Graph coloring is one of the most important concepts in graph 
theory. It is used in many real-time applications of computer 

science such as – 
 

Clustering, Data mining , Image capturing, Image segmentation 

,Networking, Resource allocation, Processes scheduling 

  

Graph 
Colour 
k 

C If G[K][J] if 
C=X[j] 

Return 

1 1 G[1][1]=1 1≠0 Return True 
X[1]=1 (red) 1 1 G[1][2]=1 1≠0 

1 1 G[1][3]=0 1≠0 

1 1 G[1][4]=1 1≠0 

2 1 G[2][1]=1 1=1 Return False 

2 2 G[2][1]=1 2≠1 Return True 
X[2]=2 (green) 2 2 G[2][2]=1 2≠0 

2 2 G[2][3]=1 2≠0 

2 2 G[2][4]=0 2≠0 

3 1 G[3][1]=0 1=1 Return True 
X[3]=1 (red) 3 1 G[3][2]=1 1≠2 

3 1 G[3][3]=1 1≠0 

3 1 G[3][4]=1 1≠0 

4 1 G[4][1]=1 1=1 Return False 

4 2 G[4][1]=1 2≠1 Return True 

X[3]=2 (green) 4 2 G[4][2]=0 2=2 

4 2 G[4][3]=1 2≠1 

4 2 G[4][4]=1 2≠0 
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Hamiltonian Cycle (William Rowan Hamilton -1859) 

Hamiltonian cycle is a path in a directed or undirected graph that 

visits each vertex exactly once.   The problem is to check whether 

a given graph contains Hamiltonian cycle or not. A graph that 

contains a Hamiltonian cycle is called a traceable graph.  

In other words, A Hamiltonian cycle (or Hamiltonian circuit) is a 

Hamiltonian Path such that there is an edge (in graph) from the 

last vertex to the first vertex of the Hamiltonian Path.  

In other words, A graph is Hamiltonian-connected if for every pair 

of vertices there is a Hamiltonian path between the two vertices. 

 

Consider the following graph G1 

 

 

 

 

 

The graph G1 has Hamiltonian cycles: 
 
1,3,4,5,6,7,8,2,1 and 
1,2,8,7,6,5,4,3,1. 
 
The backtracking algorithm helps to find Hamiltonian cycle for 
any type of graph. 
 
 
 
 
 

1 2 3 4 

8 7 6 5 

https://en.wikipedia.org/wiki/William_Rowan_Hamilton
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Procedure: 
 

1. Define a solution vector X(Xi……..Xn) where Xi represents the ith visited 
vertex of the proposed cycle. 

 
2. Create a cost adjacency matrix for the given graph. 

 
3. The solution array initialized to all zeros except X(1)=1,because the 

cycle should start at vertex ‘1’. 
 

4. Now we have to find the second vertex to be visited in the cycle. 
 

5. The vertex from 1 to n are included in the cycle one by one by 
checking 2 conditions, 

 

i. There should be a path from previous visited vertex to 
current vertex. 

 
ii. The current vertex must be distinct and should not have 

been visited earlier. 
 

6. When these two conditions are satisfied the current vertex is included 
in the cycle, else the next vertex is tried. 

 
7. When the nth vertex is visited we have to check, is there any path from 

nth vertex to first vertex. if no path, the go back one step and after the 
previous visited node. 

 
Repeat the above steps to generate possible Hamiltonian cycle. 

 

Algorithm:(Finding all Hamiltonian cycle) 
 

Algorithm Hamiltonian (k) 
Loop 

   Next value (k) 
If (x (k)=0) then return; 

  If k=n then 
      Print (x) 

      exit 
   Else 

    Hamiltonian (k+1); 
End if 

Repeat 
Algorithm Nextvalue (k) 
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Repeat 
  X [k]=(X [k]+1) mod (n+1); //next vertex 

  If (X [k]=0)  
return; 

  Endif 
 

 If (G [X [k-1], X [k]]  0) then 
  For j=1 to k-1 do if (X [j]=X [k]) then break; 

  // Check for distinction. 
  If (j=k) then      //if true then the vertex is distinct. 

    If ((k<n) or ((k=n) and G [X [n], X [1]]   0))  
Return 

       Endif 
    Endif 

 Endif  

Until (false); 
 

 
 

 
  

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

X1=1 

X2 

X3 

X4 

2 

3 

4 

3 

4 

4 

3 

2 4 

4 2 

2 3 

3 2 

X= 1,2,3,4,1 

X =1,4,3,2,1 

1 2 

4 3 



86 

 

Knapsack Problem using Backtracking: 
 

 The problem is similar to the zero-one (0/1) knapsack optimization 
problem is dynamic programming algorithm. 

 
 We are given ‘n’ positive weights Wi and ’n’ positive profits Pi, and a 

positive number ‘m’ that is the knapsack capacity, the is problem calls 
for choosing a subset of the weights such that, 

 

 
 ni

WiXi
1

  m  and 
 ni

PiXi
1

 is Maximized. 

 

 Xi Constitute Zero-one valued Vector. 

 

 The Solution space is the same as that for the sum of subset’s 

problem. 
 

 Bounding functions are needed to help kill some live nodes without 

expanding them. A good bounding function for this problem is obtained 
by using an upper bound on the value of the best feasible solution 

obtainable by expanding the given live node. 
 

 The profits and weights are assigned in descending order depend upon 
the ratio. 

 

 (i.e.) Pi/Wi  P(I+1) / W(I+1) 

 

Solution : 

 

 After assigning the profit and weights ,we have to take the first object 

weights and check if the first weight is less than or equal to the 
capacity, if so then we include that object (i.e.) the unit is 1.(i.e.) K 

1. 

 
 Then We are going to the next object, if the object weight is exceeded 

that object does not fit. So unit of that object is ‘0’.(i.e.) K=0. 
 Then We are going to the bounding function ,this function determines 

an upper bound on the best solution obtainable at level K+1. 
 

 Repeat the process until we reach the optimal solution. 
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Algorithm: 
 

Algorithm Bknap(k,cp,cw) 
 

// ‘m’ is the size of the knapsack;  ‘n’  no.of weights & profits. W[]&P[] are 

the //weights & weights. P[I]/W[I]   P[I+1]/W[I+1]. 
//fwFinal weights of knapsack. 

//fp final max.profit. 

//x[k] = 0 if W[k] is not the knapsack,else X[k]=1. 
 

{ 
       // Generate left child. 

        If((W+W[k] m) then 
        { 

               Y[k] =1; 
                If(k<n) then Bnap(k+1,cp+P[k],Cw +W[k]) 

                   If((Cp + p[w] > fp) and (k=n)) then  
 

                     { 
                        fp = cp + P[k]; 

                        fw = Cw+W[k]; 
                       for j=1 to k do X[j] = Y[j]; 

                   } 

    } 
 

  if(Bound(cp,cw,k)  fp) then 
  { 

        y[k] = 0; 
      if(k<n) then Bnap (K+1,cp,cw); 

    if((cp>fp) and (k=n)) then 
       { 

            fp = cp; 
             fw = cw; 

               for j=1 to k do X[j] = Y[j]; 
         } 

    } 
} 
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Algorithm for Bounding function: 
 

Algorithm Bound(cp,cw,k) 

// cp current profit total. 
//cw current weight total. 

//kthe index of the last removed item. 

//mthe knapsack size. 
 

{ 
     b=cp; 

     c=cw; 
     for I =- k+1 to n do 

  { 
          c= c+w[I]; 

        if (c<m) then b=b+p[I]; 
             else return b+ (1-(c-m)/W[I]) * P[I]; 

} 
return b; 

} 
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Unit - V 
Branch and Bound: Least Cost Search. Bounding: FIFO 

Branch and Bound and LC Branch and Bound. 0/1 Knapsack 

Problem, Travelling Salesman Problem. 

 

Branch and Bound 

 It is generally used for optimization problems. 
 As the algorithm progresses, a tree of sub problems is 

formed. 
 The original problem is considered as a root problem. 
 A method is used to construct an upper and lower bound for 

a given problem. 
 At each node, apply the bounding methods, 
 If the bound matches, it is deemed(judged) a feasible 

solution to that particular sub problem. 
 If bounds do not match, partition the problem represented 

by the node, and make sub problems into children nodes. 
 Continue, using the best known feasible solution to solve  

sections of the tree, until all nodes have been solved. 

Branch and bound is an algorithm design paradigm (pattern) 
which is generally used for solving combinatorial optimization 
problems.  

(Combinatorial optimization means searching for an optimal 
solution in a finite or countably infinite set of potential solutions) 

These problems typically exponential in terms of time complexity 
and may require exploring all possible permutations in worst 
case.  

Branch and Bound solve these problems relatively quickly. 

A branch-and-bound algorithm consists of a systematic 
enumeration (list) of candidate(possible) solutions by means 
of state space search: the set of candidate solutions is thought of 
as forming a rooted tree with the full set at the root.  

https://en.wikipedia.org/wiki/State_space_search
https://en.wikipedia.org/wiki/Tree_(graph_theory)
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The algorithm explores branches of this tree, which represent 
subsets of the solution set. Before enumerating the candidate 
solutions of a branch, the branch is checked against upper and 
lower estimated bounds on the optimal solution, and is discarded 
if it cannot produce a better solution than the best one found so 
far by the algorithm. 

 

Branch & Bound discovers branches within the complete search 
space by using estimated bounds to limit the number of possible 
solutions. The different types (FIFO, LIFO, LC) define different 

'strategies' to explore the search space and generate branches. 

FIFO (first in, first out): always the oldest node in the queue is 
used to extend the branch. This leads to a breadth-first search, 
where all nodes at depth d are visited first, before any nodes at 
depth d+1 are visited. 
 
LIFO (last in, first out): always the youngest node in the queue is 
used to extend the branch. This leads to a depth-first search, 
where the branch is extended through every 1st child discovered 

at a certain depth, until a leaf node is reached. 
 
LC (lowest cost): the branch is extended by the node which adds 
the lowest additional costs, according to a given cost function. 
The strategy of traversing the search space is therefore defined 
by the cost function. 

 

What is the difference between Backtracking and Branch and 
Bound Method? 

Backtracking Branch and Bound 
It is used to find all possible 

solutions available to the 
problem. 

 

It is used to solve optimization problem. 

It traverse tree by DFS(Depth 

First Search). 

It may traverse the tree in any manner, 

DFS or BFS. 
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It realizes that it has made a bad 

choice & undoes the last choice 
by backing up. 

 

It realizes that it already has a better 

optimal solution that the pre-solution 
leads to so it abandons that pre-solution. 

It search the state space tree 
until it found a solution. 

 

It completely searches the state space 
tree to get optimal solution. 

It involves feasibility(possibility) 

function. 

 

It involves bounding function. 

 

General Branch and Bound Algorithm 
 

1. Starting by considering the root node and applying a lower-
bounding and upper-bounding procedure to it.  

2. If the bounds match, then an optimal solution has been found 
and the algorithm is finished.  

3. If they do not match, then algorithm runs on the child nodes 
 

Upper Bound: 
 
In a given set, a number which is greater than or equal to all the 

elements is known as upper bound for that set. More precisely, 
let us assume a set of real numbers be represented by S. 
Then, the upper bound for this set would be a number, say k, in 
such a way that for all x belongs to S, there must be k ≥≥ x. 
 
Lower Bound: The lower bound is said to be the number that 
is less than or equal to every element in a given set. Let us recall 
more formal definition. Assume that S be a set of real numbers 
and k be some number. Then, k is said to be the lower bound for 
set S, if for every x belongs to, there exists k ≤≤ x. 

 
A set is said to be "bounded above" if it has an upper bound. In 
the same way, it is called "bounded below" if it has a 
lower bound. 
 
The algorithm depends on the efficient estimation of the lower 
and upper bounds of a region/branch of the search space and 
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approaches exhaustive enumeration as the size (n-dimensional 
volume) of the region tends to zero 

FIFO Branch and Bound 

In branch-and-bound terminology, a BFS-like state space search 
will be called FIFO (First In First Out) search as the list of live 
nodes is a first-in-first-out list (or queue). 

LIFO Branch and Bound 

A D-search-like state space search will be called LIFO (Last In 
First Out) search as the list of live nodes is a last-in-first-out list 
(or stack). 

Travelling Salesman Problem 

We are given a set of cities and distances between every pair of cities. The problem 

is to find the shortest  possible route that visit every city exactly one and returns to 

the starting city. 

 
  

 A B C D Reduce 
by  

A ∞ 4 12 7 4 
B 5 ∞ ∞ 18 5 
C 11 ∞ ∞ 6 6 
D 10 2 3 ∞ 2 

 
Step 1: Write the initial cost matrix 
            Reduce it   
              After row reduction  
 

 A B C D 
A ∞ 0 8 3 
B 0 ∞ ∞ 13 
C 5 ∞ ∞ 0 
D 8 0 1 ∞ 

           (Reduced matrix)        - - 1 - 

 A B C D 
A ∞ 0 7 3 
B 0 ∞ ∞ 13 
C 5 ∞ ∞ 0 
D 8 0 0 ∞ 

 

A A C 

D B 

Colum 

Reduced 

12 

6 4 5 
10 

18 

11 

3 
7 

2 
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  So  cost of note-1 is  
 

 

Step – 2:  Choosing to go to Vertex B: Path A  B 

   From the reduced matrix of Step-1, M [A,B] = 0 

  Set row A and Colum B to ∞ 

  Set M[B,A] = ∞ 

  Now resulting matrix is 
 

 A B C D 
A ∞ ∞ ∞ ∞ 
 B ∞ ∞ ∞ 13 
C 5 ∞ ∞ 0 
D 8 ∞ 0 ∞ 

 
Row reduction     Now we reduce this matrix and find the cost  
  
             5     - -  
 
 
 
 
 
 
So cost (2)  = Cost (1) = Reduction + M[A,B] 

  = 18+18+0=36 
 
Step 3 : Choosing to go to Vertex C, Path A C 

   From the reduced matrix of step-1, M[A,B] = 7 

   Set row A and Colum  C to ∞ 

   Set M[C,A] = ∞ 

   Now reduced matrix is 
 
  

Cost (1)  =4  +  5  + 6 + 2 + 1 = 18  

 A B C D 
A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 
C 0 ∞ ∞ 0 
D 3 ∞ 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 
C 5 ∞ ∞ 0 
D 8 ∞ 0 ∞ 

      5 - - - 

  - 

13 

  - 

  - 

Colu

m 

Reduced 
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 A B C D 

A ∞ ∞ ∞ ∞ 
 B 0 ∞ ∞ 13 
C ∞ ∞ ∞ 0 
D 8 0 ∞ ∞ 

 
Choosing to go to vertex D : Path A  D 
   from reduced matrix of step 1 – M[A, D] = 3 

  Set Row-a and Colum D to ∞ 

  Set M[D,A] to ∞ 

  Now the reduced matrix is 
 
  
             5     - -  
 
 
 
 
 
 
So cost of (4)  = Cost(1) + reduction + M[A,D] 
   = 18+5+3=26 
Thus we have 

  Cost [2]  = 36         Cost [3] = 25        Cost [4) = 26 

  So we choose the lowest cost path  A  C 

Step 4: Choosing to go to vertex B path A  C  B 

  from the reduced matrix of step-2 M[C,B] = ∞ 

  Set Row C and Colum D to ∞ 

  Set M[B,A] = ∞ 

  Now the reduce matrix is 
  

 A B C A 
A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ ∞ 

C 0 ∞ ∞ ∞  
D ∞ 0 0 0 

This  

Matrix 

Is 

already 

Reduced  

 

So Cost (3) = Cost(1)+ Reduction +M[A,C] 
                  = 18+0+7=25 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ ∞ 

C 5 ∞ ∞ ∞ 

D ∞ 0 0 ∞ 
        

 
 

- 

- 

5 

- 

Row 

Reduced 
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             5     - -  
 
 
 
 
 
 
Cost [5]  = Cost [3] + Reducing + M[C,B] 

  = 25+13+8+∞ = ∞ 
 
      Cost (1) = 18 
 
 
 
 
 
         Cost (2) = 36    Cost (2) = 25        Cost (3) = 25 
 
                   
                                                      1                                          
 
 
 
                     2                                           3                             4           
          A  C  D 
 
 
 
                                 5                                                        6 
 
 
 
 
                                                                                              7 
 
 
Choosing to go to vertex D Path A  C  D 

   From the reduce matrix of step-2 M[C,D] = 0 

  Set Row C and Colum D to ∞ 

 A B C A 
A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

C ∞ ∞ ∞ ∞  
D 0 ∞ ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 13 

C ∞ ∞ ∞ ∞ 

D 8 ∞ ∞ ∞ 
        

 
 

- 

13 

- 

8 

Row 

Reduced 

A 

B

  C 
D 

A 

B

  C 
D 

B D 

B 
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   Set M[D,A] = ∞ 

   Now the reduced matrix is 
 
 

 A B C D 
A ∞ ∞ ∞ ∞ 
 B 0 ∞ ∞ ∞ 
C ∞ ∞ ∞ ∞ 
D ∞ 0 ∞ ∞ 

 
Choosing to go to vertex B  Mode (7) (Path A  C  D  B) 

   From the reduce matrix of step-3 M[D,B] = 0 

  Set Row D and Colum B to ∞ 

   Set M[B,A] = ∞ 

   Now the reduced matrix is 
 
 

 A B C D 
A ∞ ∞ ∞ ∞ 
 B ∞ ∞ ∞ ∞ 
C ∞ ∞ ∞ ∞ 
D ∞ ∞ ∞ ∞ 

 
  This optional path is 
     A   C   D   B   A  with cost of 25 
        [    12   +     6 +         2 +         5  = 25] 

 

- 

- 

- 

- 

Cost (6) = Cost (3)+ Reduction M[C,D] 
                 = 25 + 0 + 0 
    = 25  

 This matrix is already completely 
reduced.  So the cost of mode 7 
Cost [7] = Cost[6]+Reduced[D,B] 
= 25 + 0 + 0 = 25 
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